



# Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

## The Wavelike Nature of Light

#### Interference Patterns



#### Maxwell's Equations: Integral Form



#### Maxwell's Equations: Plane Wave

$$\frac{\partial^2 E}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$$
$$\frac{\partial^2 B}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 B}{\partial t^2}$$



 $\mathbf{E} = \mathbf{E}_{o} \cos(kx \cdot \omega t)$  $\mathbf{B} = \mathbf{B}_{o} \cos(kx \cdot \omega t)$ 

 $\omega/k = c$ E<sub>o</sub>/B<sub>o</sub>= c

## **Poynting Flux**

- S = (E x B)/µ<sub>o</sub> is the Poynting flux of an EM wave
  - S has units of energy per time per area = power per area
  - Intensity I = <|S|>
  - Energy = S\*A\*t



- How does the intensity of light I change if the electric field amplitude is doubled?
- A. I stays the same
- B. I doubles
- C. I increases by a factor of four
- D. I decreases by a factor of two

- How does the intensity of light I change if the electric field amplitude is doubled?
- A. I stays the same
- B. I doubles
- C. I increases by a factor of four
  - D. I decreases by a factor of two

Light Waves

 $\overline{E} = E \cdot (os(ux - wt))$   $\overline{B} = B \cdot (os(ux - wt))$ 

 $K = 2\pi/\lambda$ "unve number" "angular frequency"  $\omega = 2\pi\nu$ 

 $W_{K} = V\lambda = C$   $\tilde{E}_{3} = C$  $\overline{\zeta} = \overline{E \times B} = \frac{\overline{E \cdot B}}{r} \cos^2(ux - wt)$ Islaar = Eobo = E.2 Loc <131> = E. (ux-ut)> = E. 2/2.c Intensity I = <151> = E. 1/2,. C

- How does the intensity of light I change if the frequency is doubled?
- A. I stays the same
- B. I doubles
- C. I increases by a factor of four
- D. I decreases by a factor of two

- How does the intensity of light I change if the frequency is doubled?
- A. I stays the same
  - B. I doubles
  - C. I increases by a factor of four
  - D. I decreases by a factor of two

## **Work Function**



Electrons need surplus energy equal to or greater than the work function of a material to escape

## Photocell



## **Photelectric Classical Prediction**

- Maximum kinetic energy of the electrons should be proportional to intensity of light (since qE accelerates them!)
- II. Electrons should be ejected by light of any frequency/wavelength
- III. Electrons may not be ejected immediately (takes time to deliver enough energy)

## **Stopping Potential Experiment**



## **Classical Prediction**







## **Photoelectric Reality**

- For fixed wavelength/frequency, the maximum kinetic energy of photoelectrons is independent of intensity
- The photoelectric effect only occurs above a threshold frequency (below a threshold wavelength)
- III. First photoelectrons can be emitted almost instantaneously

## What's Going On?



## What's Going On?





### **Kicker Analogy**

Light like a Kicker... Puts in energy. All concentrated on one ball/electron. Blue kicker always kicks the same, harder than red kicker always kicks. Ball emerges with:

KE = kick energy - mgh

mgh = energy needed to make it up hill and out.



## **Photoelectric Effect**



Potassium - 2.0 eV needed to eject electron

Photoelectric effect

[Photoelectvic Effect] - Electron Kinetic energy Kmax = hv - go - threshold when stopping potential is zero on Kmox = 0

=> hy = go critical frequency  $v_c = q/h$ critical wavelength  $\lambda_c = \zeta_{v_c} = hc/q$ 

E=hv for photon Note  $F^{2} = (e()^{2} + (mc^{2})^{2}$ = (e()^{2} = 1 h v = p c=) p = h V/c $= h/\lambda$ 

## **Planck's Constant**

#### <u>The Planck Constant: h</u>

a proportionality between frequency (v) and energy

$$h = 6.626 \times 10^{-34} \text{ J s}$$

## **Typical energies**

| Each photon has: Energy =                               | hv = Planck's constant * Frequency                       |
|---------------------------------------------------------|----------------------------------------------------------|
| (Energy in Joules)                                      | (Energy in eV)                                           |
| E=hv=(6.626*10 <sup>-34</sup> J-s)*(f s <sup>-1</sup> ) | E=hv= (4.14*10 <sup>-15</sup> eV-s)*(v s <sup>-1</sup> ) |
| E=hc/λ = (1.99*10 <sup>-25</sup> J-m)/(λ m)             | E= hc/λ = (1240 eV-nm)/(λ nm)                            |

Red Photon: 650 nm

#### Work functions of metals (in eV):

| Aluminum  | 4.08 eV | Cesium | 2.1 | Lead      | 4.14 | Potassium | 2.3  |
|-----------|---------|--------|-----|-----------|------|-----------|------|
| Beryllium | 5.0 eV  | Cobalt | 5.0 | Magnesium | 3.68 | Platinum  | 6.35 |
| Cadmium   | 4.07 eV | Copper | 4.7 | Mercury   | 4.5  | Selenium  | 5.11 |
| Calcium   | 2.9     | Gold   | 5.1 | Nickel    | 5.01 | Silver    | 4.73 |
| Carbon    | 4.81    | Iron   | 4.5 | Niobium   | 4.3  | Sodium    | 2.28 |

A photon at 300 nm will kick out an electron with an amount of kinetic energy,  $KE_{300}$ . If the wavelength is halved, the energy of the electron coming out is...

V

A. less than 
$$\frac{1}{2}$$
 KE<sub>300</sub>.  
B.  $\frac{1}{2}$  KE<sub>300</sub>  
C. = KE<sub>300</sub>  
D. 2 x KE<sub>300</sub>  
E. more than 2 x KE<sub>300</sub>

A photon at 300 nm will kick out an electron with an amount of kinetic energy,  $KE_{300}$ . If the wavelength is halved, the energy of the electron coming out is...

A. less than  $\frac{1}{2}$  KE<sub>300</sub>. B.  $\frac{1}{2}$  KE<sub>300</sub> C. = KE<sub>300</sub> D. 2 x KE<sub>300</sub> E. more than 2 x KE<sub>300</sub>

$$KE_{3.0} = hV - qp$$

$$KE_{150} = 2hV - qp$$

$$= 2(hV - qp) + qp$$

$$= 2KE_{300} + qp$$

$$\ge 2KE_{300} + qp$$