

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Doppler Shift and Expansion of the Universe

$$\nu' = \nu * \frac{\sqrt{1 - v/c}}{\sqrt{1 + v/c}}$$

Transformations

If S' is moving with speed v in the positive x direction relative to S, then the coordinates of the same event in the two frames are related by:

Lorentz transformation (relativistic) $x' = \gamma(x - ut)$ y' = yz' = z $t' = \gamma(t - \frac{u}{c^2}x)$

Note: This assumes (0,0,0,0) is the same event in both frames.

Velocity transformation (3D)

Velicity Addition $V_{X}' = \frac{V_{X} - u}{1 - \frac{V_{X} u}{c^{2}}}$ what if Vx = C, $\frac{C - U}{1 - \frac{\omega}{c^2}} = \frac{C - u}{1 - \frac{\omega}{c}}$ $= ((1 - \frac{u}{1 - \frac{$ $S \cdot C + U = C$ C is the "speed limit"

Spacetime Diagrams (1D in space)

In Cory's frame: Walls are at rest

In Chrissie's frame: Walls are in motion

Concept Check: Worldlines

Concept Check: Worldlines

-loventz transformation for t/x axes $\begin{aligned} x' &= Y(x - ut) \\ t' &= Y(t - u/ax) \end{aligned}$

+ = 0 on X' axis => + - 1/2 X = 0 => + = "/c.x ct = y/cX

- same equation but inverse slope

Frame S' as viewed from S

Frame S' as viewed from S

Both frames are adequate for describing events – but will give different spacetime coordinates for these events, in general.

Interval Transformations

If S' is moving with speed v in the positive x direction relative to S, then the coordinates of the same event in the two frames are related by:

Galilean transformation (classical) $\Delta x' = \Delta x - u\Delta t$ $\Delta y' = \Delta y$ $\Delta z' = \Delta z$ $\Delta t' = \Delta t$ Lorentz transformation (relativistic) $\Delta x' = \gamma (\Delta x - u\Delta t)$ $\Delta y' = \Delta y$ $\Delta z' = \Delta z$ $\Delta t' = \gamma (\Delta t - \frac{u}{c^2}\Delta x)$

Spacetime Interval $\Delta s^2 = (C \Delta t)^2 - \Delta x^2 - \Delta y^2 - \Delta z^2$ $Ds'^2 = (CY(Ot - u \Delta x))^2$ - (8 (DX - U Dt))2 - by' - 1322

= (crot) + (r/csx) - 28 ustor - (rax) - (rust) + 2820 arat - 0 2 - 0 22 = ムナン (ビアン -アンルダ - 6x" (x2 - x20/22) - Dy2 - D22 $= C^2 B f^2 - \Delta \chi^2 - \Delta \gamma^2 - \Delta z^2$ = 052

Spacetime interval

Say we have two events: (x_1, y_1, z_1, t_1) and (x_2, y_2, z_2, t_2) . Define the spacetime interval (sort of the "distance") between two events as:

$$(\Delta s)^2 = (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2$$

Spacetime interval

The spacetime interval has the same value in all reference frames! I.e. Δs^2 is "invariant" under Lorentz transformations.

Spacetime

Here is an event in spacetime.

The blue area is the *future* on this event.

The pink is its *past*.

Spacetime

Here is an event in spacetime.

The yellow area is the "*elsewhere"* of the event. No physical signal can travel from the event to its elsewhere!

Spacetime in more than 1-d

Concept Check: Spacetime

Now we have two events A and B as shown on the left.

The space-time interval $(\Delta s)^2$ of these two events is:

- A) Positive
- B) Negative
- C) Zero

Concept Check: Spacetime

Now we have two events A and B as shown on the left.

The space-time interval $(\Delta s)^2$ of these two events is:

A) PositiveB) NegativeC) Zero

Spacetime

 $(\Delta s)^2 > 0$: Time-like events (A \rightarrow D)

 $(\Delta s)^2 < 0$: Space-like events (A \rightarrow B)

 $(\Delta s)^2 = 0$: Light-like events (A \rightarrow C)

Spacetime Intervals

http://www.trell.org/div/minkowski.html

Twin Paradox

Twin Paradox (Not a Paradox)

