

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Doppler Shift and Expansion of the Universe

$$
\nu^{\prime}=\nu * \frac{\sqrt{1-v / c}}{\sqrt{1+v / c}}
$$

Transformations

If S^{\prime} is moving with speed v in the positive x direction relative to S, then the coordinates of the same event in the two frames are related by:

Galilean transformation (classical)

$$
\begin{aligned}
& x^{\prime}=x-u t \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=t
\end{aligned}
$$

Lorentz transformation

 (relativistic)$$
\begin{aligned}
x^{\prime} & =\gamma(x-u t) \\
y^{\prime} & =y \\
z^{\prime} & =z \\
t^{\prime} & =\gamma\left(t-\frac{u}{c^{2}} x\right)
\end{aligned}
$$

Note: This assumes ($0,0,0,0$) is the same event in both frames.

Velocity transformation (3D)

$$
\begin{aligned}
& \text { Classical: } \\
& \qquad \begin{array}{l}
v_{x}^{\prime}=v_{x}-u \\
v_{y}^{\prime}=v_{y} \\
v_{z}^{\prime}=v_{z}
\end{array}
\end{aligned}
$$

Relativistic:

$$
\begin{gathered}
v_{x}^{\prime}=\frac{v_{x}-u}{1-v_{x} u / c^{2}} \\
v_{y}^{\prime}=\frac{v_{y}}{\gamma\left(1-v_{x} u / c^{2}\right)} \\
v_{z}^{\prime}=\frac{v_{z}}{\gamma\left(1-v_{x} u / c^{2}\right)}
\end{gathered}
$$

Velocity Addition

$$
v_{x}^{\prime}=\frac{v_{x}-u}{1-v \times u / c^{2}}
$$

what if $v x=c$?

$$
\begin{aligned}
& \frac{c-u}{1-\left(u / c^{2}\right.}=\frac{c-u}{1-u / c} \\
& =c(1-u / c) /(1-u / c)=c \\
& \text { so } c+u=c
\end{aligned}
$$

C is the "speed limit"

Spacetime Diagrams (iD in space)

Example: Cory in the train

In Cory's frame: Walls are at rest

Example: Chrissie on the tracks

In Chrissie's frame: Walls are in motion

Concept Check: Worldlines

Frame S^{\prime} is moving to the right at $v=0.5 c$. The origins of S and S^{\prime} coincide at $\mathrm{t}=\mathrm{t}^{\prime}=\mathrm{o}$. Which shows the world line of the origin of S^{\prime} as viewed in S ?

Concept Check: Worldlines

Frame S^{\prime} is moving to the right at $v=0.5 c$. The origins of S and S^{\prime} coincide at $\mathrm{t}=\mathrm{t}^{\prime}=\mathrm{o}$. Which shows the world line of the origin of S^{\prime} as viewed in S ?

- Lorentz transformation for

$$
\begin{aligned}
& t^{\prime}, x^{\prime} \text { axes } \\
& x^{\prime}=r(x-u t) \\
& t^{\prime}=\gamma\left(+-u_{c^{2}} x\right) \\
& x^{\prime}=0 \text { an } t^{\prime} a x i s \\
& \Rightarrow x=u+ \\
& =u / c \cdot c+ \\
& t^{\prime}=0 \text { an } x^{\prime} \text { axis } \\
& \Rightarrow t-u / c^{2} x=0 \\
& \Rightarrow t=u / c^{2} x \\
& c t=u / c x
\end{aligned}
$$

- same equation but inverse slope

Frame S^{\prime} as viewed from S

Frame S' as viewed from S

In S: $(x=3, c t=3)$
In $\mathrm{S}^{\prime}:\left(\mathrm{x}^{\prime}=1.8, \mathrm{ct}^{\prime}=2\right)$

Both frames are adequate for describing events - but will give different spacetime coordinates for these events, in general.

Interval Transformations

If S^{\prime} is moving with speed v in the positive x direction relative to S, then the coordinates of the same event in the two frames are related by:

Galilean transformation (classical)
$\Delta x^{\prime}=\Delta x-u \Delta t$
$\Delta y^{\prime}=\Delta y$
$\Delta z^{\prime}=\Delta z$
$\Delta t^{\prime}=\Delta t$

Lorentz transformation
(relativistic)

$$
\begin{aligned}
& \Delta x^{\prime}=\gamma(\Delta x-u \Delta t) \\
& \Delta y^{\prime}=\Delta y \\
& \Delta z^{\prime}=\Delta z \\
& \Delta t^{\prime}=\gamma\left(\Delta t-\frac{u}{c^{2}} \Delta x\right)
\end{aligned}
$$

Spacetime Interval

$$
\begin{aligned}
\Delta s^{2}= & (c \Delta t)^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2} \\
\Delta s s^{2}= & (c \gamma(\Delta t-u / c \Delta x))^{2} \\
& -(\gamma(\Delta x-u \Delta t))^{2} \\
& -\Delta y^{2}-\Delta z^{2} \\
= & (c \gamma \Delta t)^{2}+(\gamma u / c \Delta x)^{2}-2 \gamma^{2} u \Delta t \Delta x \\
& -(\gamma \Delta x)^{2}-(r u \Delta t)^{2}+2 \gamma^{2} u \Delta x \Delta t \\
& -\Delta y^{2}-\Delta z^{2} \\
= & \Delta t^{2}\left(c^{2} \gamma^{2}-\gamma^{2} u^{2}\right) \\
& -\Delta x^{2}\left(\gamma^{2}-\gamma^{2} u^{2} / c^{2}\right) \\
& -\Delta y^{2}-\Delta z^{2} \\
= & c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2} \\
= & \Delta s^{2}
\end{aligned}
$$

Spacetime interval

Say we have two events: $\left(\mathrm{x}_{11} \mathrm{y}_{11} \mathrm{z}_{1}, \mathrm{t}_{1}\right)$ and $\left(\mathrm{x}_{21} \mathrm{y}_{21} \mathrm{z}_{21} \mathrm{t}_{2}\right)$. Define the spacetime interval (sort of the "distance") between two events as:

$$
(\Delta s)^{2}=(c \Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}
$$

Spacetime interval

The spacetime interval has the same value in all reference frames! l.e. Δs^{2} is "invariant" under Lorentz transformations.

Spacetime

Here is an event in spacetime.
The blue area is the future on this event.

The pink is its past.

Spacetime

Here is an event in spacetime.

The yellow area is the "elsewhere" of the event. No physical signal can travel from the event to its elsewhere!

Spacetime in more than 1-d

Concept Check: Spacetime

Now we have two events A and B as shown on the left.

The space-time interval $(\Delta \mathrm{s})^{2}$ of these two events is:
A) Positive
B) Negative
C) Zero

Concept Check: Spacetime

Now we have two events A and B as shown on the left.

The space-time interval $(\Delta \mathrm{s})^{2}$ of these two events is:
A) Positive
B) Negative
C) Zero

Spacetime

$(\Delta s)^{2}>0$: Time-like events

$$
(\mathrm{A} \rightarrow \mathrm{D})
$$

$(\Delta \mathrm{s})^{2}<0$: Space-like events $(A \rightarrow B)$
$(\Delta s)^{2}=0$: Light-like events

$$
(\mathrm{A} \rightarrow \mathrm{C})
$$

Spacetime Intervals

http://www.trell.org/div/minkowski.html

Relative velocity:
0.5

Event A: O

$$
\begin{aligned}
\mathrm{t} & =\mathrm{t}^{\prime} \\
\mathrm{d} & =0 \\
\mathrm{~d}^{\prime} & =0
\end{aligned}
$$

Event B: O

$$
\begin{aligned}
t & =4 \\
d & =2 \\
t^{\prime} & =3.4641 \\
d^{\prime} & =0
\end{aligned}
$$

Invariant interval:

$$
\begin{aligned}
& \mathrm{i}^{2}=(\mathrm{ct})^{2}-\mathrm{d}^{2} \\
&=12 \\
& \mathrm{i}^{\prime 2}\left.=(\mathrm{ct})^{\prime}\right)^{2}-\mathrm{d}^{\prime 2}
\end{aligned}=12
$$

Twin Paradox

your point of view

Jackie's point of view Twin paradox

Before

After

Twin Paradox (Not a Paradox)

