

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Announcements

- Total homework grade (after dropping lowest score) uploaded to ICON
- Participation extra credit will be uploaded this afternoon
- Please remember to fill out course evaluations (30% response so far...)

Hydrogen Atom

	\boldsymbol{n}	l	m	s
$1 s$	1	0	0	$1 / 2,-4 / 2$
2 m	2	0	0	$1 / 2,-1 / 2$
2 p	2	1	$1,0,-1$	$1 / 2,-4 / 2$
3 s	3	0	0	$1 / 2,-1 / 2$
3 p	3	1	$1,0,-1$	$1 / 2,-1 / 2$
3 d	3	2	$2,1,0,-1,-2$	$1 / 2,-1 / 2$
4 s	4	0	0	$1 / 2,-1 / 2$
4 p	4	1	$1,0,-1$	$1 / 2,-1 / 2$
4 d	4	2	$2,1,0,-1,-2$	$1 / 2,-1 / 2$
4 f	4	3	$3,2,1,0,-1,-2,-3$	$1 / 2,-1 / 2$

n -> Energy
l-> Angular momentum $\mathrm{m}_{l}->$ Orientation of l
$\mathrm{m}_{\mathrm{s}}->$ Electron spin

Sample Question

- Does the wave function at the right represent one with a large or small L_{z} (z component of angular momentum)?
A. Large
B. Small
C. Can't tell

$$
\begin{aligned}
& \text { Orbit in } x-y \text { lene } \\
& \quad \Rightarrow \operatorname{hig}^{h}\left|L_{t}\right|
\end{aligned}
$$

Sample Question

The ground state wave function of the electron in a hydrogen atom is as shown at right. At what radius r from the nucleus are you most likely to find the electron?
A. $r=0$
B. $r=a_{0} / 2$
C. $r=a$ o
D. $r=2 a_{0}$

$$
\begin{aligned}
P(r) & =r^{2} R^{2}(r) \\
& =r^{2} \frac{1}{\pi a_{0}^{3}} e^{-2 r / 9 \cdot} \\
d P(r) / d r & =\frac{1}{\pi 0^{3}}\left(2 r e^{-2 r / 0_{0}}+r^{2} \cdot-2 / \cdots e^{-2 r r}\right) \\
& =0 \\
& \Rightarrow 2 r-2 r^{2} / \cdots=0 \\
& \Rightarrow r=90
\end{aligned}
$$

Many-Electron Atoms

- Pauli exclusion principle: No two electrons can have the same set of quantum \#'s

Specimen Atom - Characteristic X-Rays

"Moseley's Law" for $\mathrm{K}_{\alpha} \mathrm{X}$-Rays $E=h \nu=E_{i}-E_{f}=\frac{m_{e} q_{e}^{4}(Z-1)^{2}}{8 h^{2} \varepsilon_{0}^{2}}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$

$$
E=13.6 * 0.75^{*}(Z-1)^{2}
$$

$$
E=10.2 *(Z-1)^{2}
$$

Sample Question

- The sodium atom ($Z=11$) has a single electron in the 3 s orbital. What is closest to the effective nuclear charge that this electron sees?
A. +e
B. -e
C. +5 e
D. +10e
outer electron well screened

$$
\begin{aligned}
z \text { eff } & \sim z-10 \\
& =1
\end{aligned}
$$

Sample Question

- The K_{α} wavelength of an element with atomic number $Z=17$ is 8 . What is the atomic number of an element with a K_{α} wavelength of 32 ?
A. 3
B. 7
C. 9
D. 33
E. 65

$$
\begin{aligned}
& \Delta E=(z-1)^{2} \cdot 13.6 \cdot(1-1 / 4) \\
& =10 \cdot 2 \cdot(z-1)^{2} \\
& \begin{aligned}
& \Delta=\text { hc/ } / \Delta E=4 / 62 \cdot(z-1)^{2} \\
& \frac{\lambda_{2}}{\lambda_{1}}=4=\frac{\left(z_{1}-1\right)^{2}}{\left(z_{2}-1\right)^{2}}=\frac{16^{2}}{\left(z_{2}-1\right)^{2}} \\
& \Rightarrow\left(z_{2}-1\right)^{2}=16^{2} / 4=64 \\
& \Rightarrow z_{2}-1=8 \\
& \Rightarrow z_{2}=9
\end{aligned}
\end{aligned}
$$

Molecules

Nonpolar covalent bond
Bonding electrons shared equally between two atoms. No charges on atoms.

Polar covalent bond
Bonding electrons shared unequally between two atoms. Partial charges on atoms.

Ionic bond
Complete transfer of one or more valence electrons. Full charges on resulting ions.

Irbiernuchar sepherifion

$$
\begin{array}{ll}
E_{L}=L(L+1) \hbar^{2} /\left(2 \mu R^{2}\right)=B L(L+1) & \Delta L= \pm 1 \\
E_{N}=(N+1 / 2) \hbar \omega & \Delta N= \pm 1
\end{array}
$$

rotation

vibration

Sample Question

The figure shows the energy curves of two different molecules that have the same reduced mass. Which molecule has the larger rotational moment of inertia?

A. Molecule 1
B. Molecule 2
C. Both are the same
D. No way to tell

$$
\begin{aligned}
& I=\mu R_{e 2}^{2} \\
& \mu_{1}=\mu_{2} \\
& R_{\text {eq } 2}>R_{\text {eq } 1} \Rightarrow I_{2}>I_{1}
\end{aligned}
$$

Sample Question

The figure shows the energy curves of two different molecules that have the same reduced mass. Which molecule has the larger vibrational energy spacing?

A. Molecule 1
B. Molecule 2
C. Both are the same
D. No way to tell

$$
\begin{aligned}
& \Delta E_{n}=\hbar \sqrt{\frac{k}{\mu}} \\
& U \sim 1 / 2 k x^{2} \\
& u_{1} \text { steepen } \Rightarrow k_{1}>k_{2} \\
& \Rightarrow \Delta E_{n_{1}}>\Delta E_{n_{2}}
\end{aligned}
$$

Statistical Physics

Pointiceaparea	Maxwel\|-Bolkinaa	Bact-Eisita	Fermi-Derac
Sersiticy Applicable	Clinucal	Quantim	Q wintim
Natice of pandei	Tokntical d	DCancal adhingurihable	
Exaple	Molecules of a gh	iWhotron ina canty itphonons in in solad	Fiee ellectioes in esaducten
Propeties paricles	Aay spue wave fanchons do sobr overlap	$\begin{aligned} & \text { Spurdi:2:s. } \\ & \text { Overlys of wave } \\ & \text { fuenches } \end{aligned}$	$5 \mathrm{pw}-12.32 .52$ Overlap of wave finches fuecticas
$\begin{aligned} & \text { Disirionion } \\ & \text { fusctioe } \end{aligned}$	$f(E)=A e^{\text {EkT }}$	$f(\mathrm{E})=\frac{1}{A e^{\mathrm{kKT}} / 1}$	$\left(f(\mathrm{E})=\frac{1}{1+e^{a t} p / \mathrm{KT}}\right.$

Sample Question

- Let E represent the average energy of electrons in a certain block of metal at a temperature of o K. Now suppose the electrons are magically changed from spin 1/2 particles (fermions) to spin 1 particles (bosons). Would you expect the average energy of the spin 1 electrons in an otherwise identical block of metal at o K to be...
A. Greater than for spin $1 / 2$
B. Less than for spin $1 / 2$
C. The same as for spin $1 / 2$
D. Cannot determine

$$
\begin{aligned}
& \text { At } 0 k \\
& \quad\langle E\rangle_{B E}=0 \\
& \langle E\rangle_{F O} \neq 0 \\
& \text { S. }\langle E\rangle_{B E}<\langle E\rangle_{P D}
\end{aligned}
$$

Sample Question

- For a system of two dice, the 11 macrostates and 36 microstates are shown below, assuming distinguishable dice. How many macrostates and microstates are there if the dice are indistinguishable fermions that can't have the same \#?
A. 11,36 (same)

Total number of microstates: 36

Eliminate all doubles

$$
\begin{aligned}
36 & =6 \times 6 \\
& \Rightarrow 6 \times 5=30
\end{aligned}
$$

- but since indistinguishable, order doesu't matter
so $\frac{6 \times 5}{2}=15$ microstates
- All macnstates except

11 and 66 , s. 9 macuortates

