

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Counting Macrostates/Microstates

Total number of microstates: 36

Total number of macrostates: 11

Binomial Coefficients / Number of wars to choose 2 of 5 people ABCDE

First pick one - 9 possibilities Then pick second - 4 possibilities Pissible picks = 5x4 Put AB = BA (duble counting) Unique possible picus = 5×4/2 $\frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1} = \frac{5!}{3!2!}$ $\frac{5 \times 4}{2} =$

Binomial Coefficients

 The binomial coefficient is the number of ways of picking k unordered outcomes from n possibilities ("n choose k")

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

[Multinomial Coefficients] Number of ways to put Specple in 3 groups W/ 2 in first bin 2 in second and 1 in 3rd. - First pick 2. .7 5 $= \left(\frac{5}{2} \right) = \frac{5!}{3!2!}$ - Then pick 2 of 3 $\binom{3}{2} = \frac{3}{2!}$ - Then pick 1 of 1 $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{7}$ $-Multiply \frac{5!}{3!2!} \frac{3!}{2!1!} \frac{1!}{1!}$ $=\frac{5!}{2!2!1!}$ $6 everally \left(\begin{matrix} n \\ k, - - k \end{matrix} \right) = \frac{n!}{k! \cdot - \cdots \cdot k \cdot !}$

Multinomial Coefficients

 The multinomial coefficient is the number of ways of depositing n distinct objects into m distinct bins, with k₁ objects in the first bin, k₂ objects in the second bin, ...

$$\binom{n}{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! k_2! \cdots k_m!}$$

Caveat

- If you find 10.1-10.2 hard to follow, I recommend the HyperPhysics web site for an alternate treatment (the following slides are partially derived from this site):
 - http://hyperphysics.phy-astr.gsu.edu/hbase/ quantum/disbol.html

Energy Distribution (n=9, k=6)

Counting Microstates

- How many different microstates are in this macrostate?
- A. 6
- B. 20
- C. 30
- D. 60
- E. 180

How many different microstates are in this macrostate?

Fotal Multiplicity Multiplicity3!/1:2! = 3Macrostates 3+0+0 2+1+0 3/11/11 = 6 1+1+1 3!/3! = 110

Same as	$\binom{5}{2} =$	$\frac{5!}{3!2!} = 10$
3 + 0 +0	2+1+0	1+1+1
11000	100101	01010
1000	101001	
9001	110010	
	110100	
	010011	
	001011	

Total Multiplicity of Microstates

$$\Omega(N,q) = \binom{q+N-1}{q} = \frac{(q+N-1)!}{q!(N-1)!}$$

This is the formula for "distinguishable" particles

E.g. N = 4 particles, q = 8 units of energy

How many total ways can I distribute three units of energy among three distinguishable particles?

- **1**0
- 20

How many total ways can I distribute three units of energy among three distinguishable particles?

Energy Distribution (n=9, k=6)

2002 total states to count!

Maxwell-Boltzmann Distribution

Quantum Particles are Indistinguishable

- Bosons (spin 1 particles)
 - E.g. photons
 - No restrictions on how many can be in the same quantum state
- Fermions (spin 1/2 particles)
 - E.g. electrons
 - At most two fermions (spin up and spin down) can be in any quantum state

Boson Energy Distribution (n=9, k = 6)

Only 26 total states to count

Bose-Einstein Statistics

Fermion Energy Distribution (n=9, k = 6)

Only 5 total states to count!

Fermi-Dirac Statistics

