

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Counting Macrostates/Microstates

Total number of microstates: 36
Total number of macrostates: 11

Binomial Coefficients
Number of ways to choose 2 of 5 people

$$
\begin{array}{lllll}
A & B & C & D & E \\
0 & \otimes & \odot & O & O
\end{array}
$$

First pick one - 5 possibilitios Then pick second - 4 possibilities

$$
\text { possible picks }=5 \times 4
$$

But $A B=B A$ (double counting)
Unique possible picks $=5 \times 4 / 2$

$$
\frac{5 \times 4}{2}=\frac{5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 2 \times 1}=\frac{5!}{3!2!}
$$

Binomial Coefficient

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

Binomial Coefficients

- The binomial coefficient is the number of ways of picking k unordered outcomes from n possibilities ("n choose k")

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Multinomial Coefficients
Number of ways to put sperple in ${ }^{3}$ groups, $m / 2$ in first bin? 2 in second, and 1 in $3 r d$.

- First pick 2 .t 5

$$
\Rightarrow\binom{s}{2}=\frac{s!}{3!2!}
$$

-Then pick 2 of 3

$$
\binom{3}{2}=\frac{3!}{2!1!}
$$

- Then pick 1 of 1

$$
(1)=\frac{1!}{1!}
$$

- Multiply $\frac{5!}{3!2!} \frac{3!}{2!1!} \frac{1!}{1!}$

$$
=\frac{5!}{2!2!1!}
$$

Generally $\quad\left(k_{1}, n-k_{m}\right)=\frac{n!}{k_{!}!+\cdots k_{n}!}$

Multinomial Coefficients

- The multinomial coefficient is the number of ways of depositing n distinct objects into m distinct bins, with k_{1} objects in the first bin, k_{2} objects in the second bin, ...

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}=\frac{n!}{k_{1}!k_{2}!\cdots k_{m}!}
$$

Caveat

- If you find 10.1-10.2 hard to follow, I recommend the HyperPhysics web site for an alternate treatment (the following slides are partially derived from this site):
- http://hyperphysics.phy-astr.gsu.edu/hbase/ quantum/disbol.html

Energy Distribution (n=9, k=6)

9 units of energy distributed among six particles (i.e. $\langle\mathrm{E}\rangle=1.5$)

180	180	180	180	60	30	120	60	180	30	6	30	20
8												
6												
5												
$\begin{aligned} & 3 \\ & 2 \end{aligned}$												

Counting Microstates

$$
\text { Number of microstates }=\frac{N!}{n_{1}!n_{2}!n_{3}!\ldots} \text { where } \quad \begin{aligned}
& N=\text { total number of particles } \\
& n_{1}=\text { number of particles in level } i
\end{aligned}
$$

Assumes particles are "distinguishable"

$$
\frac{6!}{5!1!}=6 \quad \frac{6!}{3!2!1!}=60 \quad \frac{6!}{2!2!1!1!}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{4}=180
$$

Concept Check

- How many different microstates are in this macrostate?
A. 6
B. 20
C. 30
D. 60
E. 180

Concept Check

- How many different microstates are in this macrostate?

A. 6
B. 20
C. 30
D. 60
E. 180

$$
\begin{aligned}
& \text { Total Multiplicity] } \\
& \begin{array}{ll}
\text { Macrostates } & 3!/ 1!2!=3 \\
3+0+0 & 3!/ 1!!!!
\end{array} \\
& 2+1+0 \\
& 1+1+1
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Same as } & \binom{5}{2}=\frac{5!}{3!2!}=10 \\
\frac{3+0+0}{11000} & \frac{2+1+0}{100101} \\
10001 & 101001 \\
00011 & 110010 \\
& 110100 \\
& 010011 \\
& 001001
\end{array}
$$

Total Multiplicity of Microstates

$$
\Omega(N, q)=\binom{q+N-1}{q}=\frac{(q+N-1)!}{q!(N-1)!}
$$

This is the formula for "distinguishable" particles
E.g. $\mathrm{N}=4$ particles, $\mathrm{q}=8$ units of energy

Concept Check

- How many total ways can I distribute three units of energy among three distinguishable particles?
- 4
- 6
- 10
- 20

Concept Check

- How many total ways can I distribute three units of energy among three distinguishable particles?

Energy Distribution (n=9, k=6)

2002 total states to count!

180	180	180	180	60	30	120	60	180	30	6	30	20
8												
7												
6												
5												
4												
2												
1												

Maxwell-Boltzmann Distribution

Quantum Particles are Indistinguishable

- Bosons (spin 1 particles)
- E.g. photons
- No restrictions on how many can be in the same quantum state
- Fermions (spin 1/2 particles)
- E.g. electrons
- At most two fermions (spin up and spin down) can be in any quantum state

Boson Energy Distribution (n=9, k=6)

Only 26 total states to count

Bose-Einstein Statistics

Fermion Energy Distribution ($\mathrm{n}=9, \mathrm{k}=6$)

Fermi-Dirac Statistics

