

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Sign of the Wave Function

$$\frac{-\hbar^2}{2\mu} \frac{1}{r^2 \sin\theta} \left[\sin\theta \frac{\partial}{\partial r} \left(r^2 \frac{\partial\Psi}{\partial r} \right) + \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\Psi}{\partial\theta} \right) + \frac{1}{\sin\theta} \frac{\partial^2\Psi}{\partial\phi^2} \right] + U(r)\Psi(r,\theta,\phi) = E \Psi(r,\theta,\phi)$$

If the wave function Ψ solves this wave equation, so does - Ψ (and there are no observable effects)

But, what about combinations of solutions...?

Single-Well Wave Functions

Double-Well Ground State Wave Functions

Concept Check

- For which wave function does the electron have a higher probability of being in the space between the two wells?
- A. Symmetric
- B. Antisymmetric
- C. No difference

Concept Check

- For which wave function does the electron have a higher probability of being in the space between the two wells?
- A. Symmetric
- B. Antisymmetric
- C. No difference

Double Well Potential

<u>https://phet.colorado.edu/en/simulation/legacy/covalent-bonds</u>

Ground State of Electron in H Atom

Symmetric and Antisymmetric Electron Wave Functions in H₂

Concept Check

- Imagine that we have a system of two protons and one electron. For which electron wave function will the system be more likely to be stable?
- A. Symmetric
- B. Antisymmetric
- C. No Difference

Concept Check

- Imagine that we have a system of two protons and one electron. For which electron wave function will the system be more likely to be stable?
- A. Symmetric
- B. Antisymmetric
- C. No Difference

Bonding and Antibonding Wave Functions

Bonding

Anti-bonding

Bonding and Antibonding Orbitals

Covalent Bonding

Hydrogen Molecule Covalent Bond Energy

Covalent Bonding

- Wave function of electrons near two nuclei are (approximately) a combination of the individual wave functions
- II. Symmetric combinations (bonding states) are energetically favorable
- III. Antisymmetric combinations (antibonding states) do not lead to stable molecules
- IV. Each molecular state has a maximum occupancy of two electrons (spin up and spin down)

ss, sp and pp covalent bonds

pp covalent bonding

Multiple Bonds

Molecule Shapes

https://phet.colorado.edu/en/simulation/molecule-shapes

Ionic Bonds

Electronegativity

- Defined as: the tendency to attract electrons
 - Increases as you fill each shell since nuclear attraction increases faster than electron screening with a shell

Electronegativity

Covalent Vs Ionic Bonding

Covalent Vs. Ionic Bonds

https://phet.colorado.edu/en/simulation/molecule-polarity

