

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Lasers

"I have one simple request, and that is to have sharks with frickin' laser beams attached to their heads!" – Dr. Evil

Lights

sources of light (traditional):

light bulb filament

Hot electrons. very large # close energy levels (metal) Radiate spectrum of colors. Mostly IR.

- •Going different directions
- •Range of wavelengths

Atomic Transitions

Stimulated Emission

Atomic Dipole Transitions

http://www.falstad.com/qmatomrad/

Emission/Absorption Processes

emission (of light) (After elec. coll. or light excited atom)

Surprising fact. Chance of stimulated emission of excited atom **EXACTLY** the same as chance of absorption by lower state atom. Critical fact for making a laser.

Coherence

Concept Check

Glass tube below, full of atoms, like discharge lamp. Some excited, some not excited.

For the condition above (3 atoms excited, 6 atoms not excited): what do you expect?

- a. More photons will come out right hand end of tube,
- b. Fewer photons will come out right hand end of tube
- c. Same number as go in,
- d. None will come out.

Concept Check

Glass tube below, full of atoms, like discharge lamp. Some excited, some not excited.

For the condition above (3 atoms excited, 6 atoms not excited): what do you expect?

- a. More photons will come out right hand end of tube,
- b. Fewer photons will come out right hand end of tube
- c. Same number as go in,
- d. None will come out.

Population Inversion

 $N_{upper} > N_{lower}$ (more reproduced than eaten)

 $N_{upper} < N_{lower}$ fewer out than in.

Laser Simulation

https://phet.colorado.edu/en/simulation/lasers

Trick Number One

- Two-level systems won't work
 - If you get a population inversion, more atoms fall back to ground state
 - Need (at least) a three-level system

"pumping" process to produce population inversion To create population inversion between G and level 1 would need:

a. time spent in level 2 (t₂) before spontaneously jumping to 1 is long, and time spent in level 1 (t₁) before jumping to G is short.

b. $t_1 = t_2$

c. t_2 short, t_1 long

d. does not matter

Trick Number One

- Two-level systems won't work
 - If you get a population inversion, more atoms fall back to ground state
 - Need (at least) a three-level system

To create population inversion between G and level 1 would need:

a. time spent in level 2 (t₂) before spontaneously jumping to 1 is long, and time spent in level 1 (t₁) before jumping to G is short.

b.
$$t_1 = t_2$$

c. t_2 short, t_1 long

d. does not matter

Metastable States

Trick Number Two

Use your photons more than once!

Laser Process

Helium Neon Laser

Helium Neon Energy Levels

Helium & Neon Visible Lines

