

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Penetration and Shielding

Penetrating Orbits

Effective Radial Potential

Energy Levels

Helium (Z=2) Transitions

Lithium (Z=3) Transitions

E25 = -13.6. Zert/h2 $= -13.6 \cdot 1/9 = -3.4$ Ers actually - 5.4 ⇒ Zeff = 1.26 Not perfect screening, but close $-E_{2p} = -3.55$ Much closer to perfect screening since less penetration (more "Circulan" or bit)

Sodium (Z=11) Transitions

Sodium Emission from the Moon

Sodium Emission from Mercury

Concept Check

- Consider an atom of Chlorine (Z = 17, outer shell 3s2 3p5) and an atom of Potassium (Z = 19, outer shell 4s1). Which atom would you predict would be easier to ionize?
- A. Chlorine
- B. Potassium
- C. Both similar
- D. No way to predict

Concept Check

- Consider an atom of Chlorine (Z = 17, outer shell 3s2 3p5) and an atom of Potassium (Z = 19, outer shell 4s1). Which atom would you predict would be easier to ionize?
- A. Chlorine
- B. Potassium
- C. Both similar
- D. No way to predict

First Ionization Potential Vs. Z

First Ionization Potential Vs. Z

lonization

Another casualty in the War of the Atoms

Atomic Radius Vs. Z

Paramagnetism and Diamagnetism

Paramagnetism: Caused by atoms with a net magnetic dipole moment – in these atoms, the intrinsic magnetic moment aligns with the external field

Diamagnetism: Caused by atoms with mostly filled orbitals – in these atoms, induction effects oppose the external applied magnetic field

Magnetism and Periodic Table

⁴ H			F erromagnetic						Antiferromagnetic									
3 Li	# Be		🗖 Dia magnetic					å	č	Ň	ê O	F	te Ne					
tt Na	12 Mg										13 Al	si 🕈	P	18 S	n# CI	™ Ar		
t9 K	20 Ca	Sc.	²² Ti	23 V	Ĉr	25 Mn	²⁸ Fe	20 Co	28 Ni	cu	۳ Zn	.⊭ Ga	e Ge	л Аз	* Se	.≋ Br	- Kr	
37 Rb	38 Sr	39 Y	⁴⁰ Zr	41 Nb	42 Mo	43 T C	44 Ru	45 Rh	46 Pd	Åg	en de la constante de la const	₄₀ In	50 Sn	Sb.	æ Te	50 	ă≇ Xe	
65 Cs	₅₆ Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	a Au	a≎ Hg	an Tl	a≌ Pb	en Bi	** Po	as At	* Rn	
87 Fr	aa Ra	as Ac		35 3	¢	26 D D		2 3	6	10				6				

Magnetic Susceptibility Vs. Z

Röntgen's X-Ray Tube

Academic Family Tree

X-Ray Energies

Concept Check

 Imagine an electron collides with a high-Z element and removes one of its 1s electrons.
 To an electron in the 2s orbital, what is the new apparent effective nuclear charge?

Concept Check

 Imagine an electron collides with a high-Z element and removes one of its 1s electrons. To an electron in the 2s orbital, what is the new apparent effective nuclear charge?

$$Z_{eff} \sim Z$$

$$Z_{eff} \sim 1$$

$$Z_{eff} \sim Z-1$$

$$Z_{eff} \sim Z-2$$

Characteristic X-Rays

Adapted from Moseley's original data (H. G. J. Moseley, Philos. Mag. (6) 27:703, 1914)

K X-Rays △E = -13.6 (Z-1)² (m-1) $\Delta E = -13.6 (z-1)^2 (z-1)^2 = 10.2 (z-1)^2$ Ka : 0: Z=8 => DEKe ~ 500 eV Fe; Z=26 => DEKe ~ 6.4 KeV

Kp: DE = -13.6 (2-1) (1/2 -1) L: DE = - 13.6 (Z-7.4) (- 1/2) Note: Perfect screening would give Z-g 15,25,21 filled less one

$$L_{a}: \Delta E = -13.6 \left(\frac{1}{2} - 7.4 \right)^{2} \left(\frac{1}{3^{2}} - \frac{1}{2^{2}} \right)$$

$$L_{p}: \Delta E = -13.6 \left(\frac{1}{2} - 7.4 \right)^{2} \left(\frac{1}{4^{2}} - \frac{1}{2^{2}} \right)$$

$$e + c.$$

K and L X-Rays

Specimen Atom – Characteristic X-Rays

X-Ray Spectroscopy

