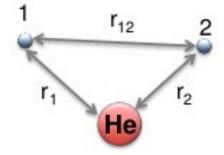

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Announcements


- HW #9 Due Friday
- Lab Q7 (Electron Spin Resonance) this week

Multi-Electron Atoms

Schrödinger Equation for Multi-**Electron Atoms**

Once we have two or more electrons, the Schrodinger equation cannot be solved exactly: fundamental challenge for quantum chemistry!

Helium atom hamiltonian:

fixed nucleus at origin

repulsion

Pauli Exclusion Principle

18

Electrons in an atom are arranged in individual "orbitals" each having a set of quantum numbers (n, l, m_l, m_s)

No two occupied electron orbitals can have the same set of quantum numbers.

State	Principal quantum number n	Orbital quantum number	Magnetic quantum number	Spin quantum number	Maximum number of electrons
1s	1	0	0	$+\frac{1}{2}, -\frac{1}{2}$	2
2s	2	0	0	$+\frac{1}{2}, -\frac{1}{2}$	2]
2р	2	1	-1,0,+1	$+\frac{1}{2}, -\frac{1}{2}$	6 } 8
3s	3	0	0	$+\frac{1}{2}, -\frac{1}{2}$	2]
Зр	3	1	-1,0,+1	$+\frac{1}{2}, -\frac{1}{2}$	6 18
3d	3	2	-2,-1,0,1,2	$+\frac{1}{2}, -\frac{1}{2}$	10]

Shell name	Subshell name	Subshell max electrons	Shell max electrons		
К	15	2	2		
1	28	2	2 + 6 = 8		
L	2 p	6			
	3s	2	0.0.10		
М	3p	6	2 + 6 + 10 = 18		
	3d	10	_ 10		

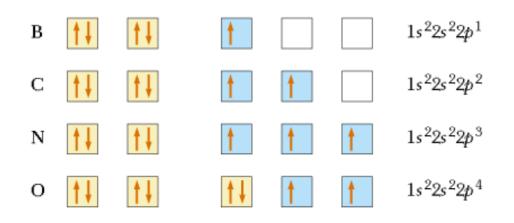
Orbital Filling

Atom 1s	2 s	2p		Electronic configuration	н	(+1	1s
Li †	1			1s ² 2s ¹	He	\leq	Image: filled shell, inert gas 1s Image: filled shell, inert gas
Be 🚺	† ↓			1s ² 2s ²	Li	(+3)	15 25
B † ↓	† ↓			$1s^2 2s^2 2p^1$	Be B	(+4) (+5)	<u>++</u> 1s 2s ++ ++ +
C 🚺	<u>t</u> ↓	• •		$1s^2 2s^2 2p^2$	С	(+6)	1s 2s 2p
				$1s^2 2s^2 2p^3$	Ň	(+7)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
N 🚹			Ι	-	0	+8	1s 2s 2p <u>++</u> ++ ++ + 1s 2s 2p
o <mark>↑↓</mark>	11	<u>↑↓</u>	1	$1s^2 2s^2 2p^4$	F	(+9)	15 25 20 Active
F│↓	†	† ↓ † ↓	1	$1s^2 2s^2 2p^5$	Ne	+10	the stable 2s2p 1s 2s 2p the stable 2s2p octet, inert gas.
Ne 🚺	† ↓	† ↓	† ↓	$1s^2 2s^2 2p^6$	Na	+11	## ##<
					Mg	+12	$\frac{1}{1s} \frac{1}{2s} \frac{1}{2p} \frac{1}{2p} \frac{1}{2s} \frac{1}{2p} \frac{1}{3s} \frac{1}{3p}$

Periodic Table

Electron Configurations in the Perodic Table																	
1							8										2
H													He 1s				
1 s	4	1										5	(7	0	0	
3 Li	4 Be											5 D	6 C	N	8	9 F	10 No
$\frac{1}{2s}$			$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
11	12													18			
Na	Mg												Ar				
3s	\rightarrow											-	51	3		<u> </u>	\rightarrow
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
<mark>4s</mark>	→	←		in an		3	d				→	←		<mark>4</mark>]	<mark>p</mark>		\rightarrow
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
5s –	1	<					1d	Second Second	1.1		→	<			<mark>р</mark>		\rightarrow
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
6s	→	→			100		d	100			→	~		0	p		\rightarrow
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs d	Mt			~						
7s –		←					u .		1								
				- 58	59	60	61	62	63	64	65	66	67	68	69	70	71
			\	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											→ [•]						
	90 91 92 93 94 95 96 97 98 99 100 101 102 103										103						
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
by: Sarah Fa	uizi		<u>۱</u>	←						5	5 f						\rightarrow

Orbital Filling

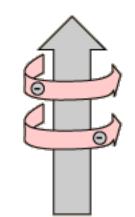

Atom 1s	2 s	2p		Electronic configuration	н	(+1	1s
Li †	1			1s ² 2s ¹	He	\leq	Image: filled shell, inert gas 1s Image: filled shell, inert gas
Be 🚺	† ↓			1s ² 2s ²	Li	(+3)	15 25
B † ↓	† ↓			$1s^2 2s^2 2p^1$	Be B	(+4) (+5)	<u>++</u> 1s 2s ++ ++ +
C 🚺	<u>t</u> ↓	• •		$1s^2 2s^2 2p^2$	С	(+6)	1s 2s 2p
				$1s^2 2s^2 2p^3$	Ň	(+7)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
N 🚹			Ι	-	0	+8	1s 2s 2p <u>++</u> ++ ++ + 1s 2s 2p
o <mark>↑↓</mark>	11	<u>↑↓</u>	1	$1s^2 2s^2 2p^4$	F	(+9)	15 25 20 Active
F│↓	†	† ↓ † ↓	1	$1s^2 2s^2 2p^5$	Ne	+10	the stable 2s2p 1s 2s 2p the stable 2s2p octet, inert gas.
Ne 🚺	† ↓	† ↓	† ↓	$1s^2 2s^2 2p^6$	Na	+11	## ##<
					Mg	+12	$\frac{1}{1s} \frac{1}{2s} \frac{1}{2p} \frac{1}{2p} \frac{1}{2s} \frac{1}{2p} \frac{1}{3s} \frac{1}{3p}$

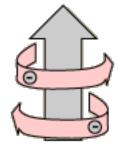
Hund's Rules

- I. The configuration with the highest total spin S has the lowest energy
- II. For a given total spin S, the configuration with the highest total angular momentum L has the lowest energy
- III. For a a subshell less (more) than half filled, the configuration with lowest (highest) total angular momentum J = L + S has the lowest energy

Hund's Rule I

 Electrons in different orbitals are less well screened, so it is energetically favorable to put one electron in every available orbital before putting two in any given orbital



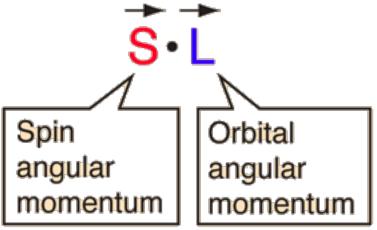

Hund's Rule II

 Semi-classical explanation: If all electrons orbit in a common direction they meet less often and thus have less mutual repulsion

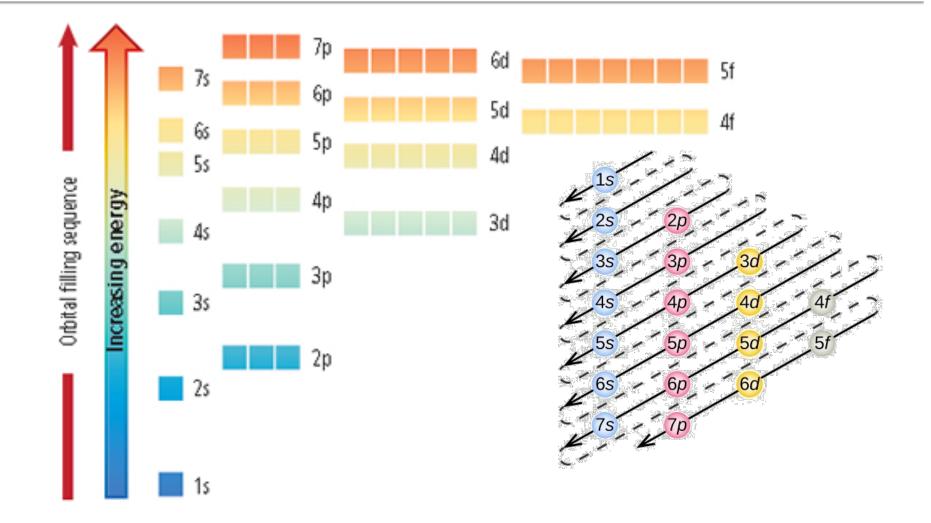
> High L, electrons orbiting same direction to add to L value.

Low L, some electrons orbiting in opposite direction to reduce the L value.

Which set of quantum numbers for two electrons in a 3p subshell is the ground state?

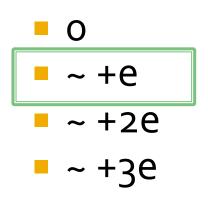

A.
$$m_l = 1$$
, $m_s = 1/2$ and $m_l = 0$, $m_s = -1/2$
B. $m_l = 1$, $m_s = 1/2$ and $m_l = -1$, $m_s = 1/2$
C. $m_l = 1$, $m_s = 1/2$ and $m_l = 0$, $m_s = 1/2$
D. $m_l = 1$, $m_s = 1/2$ and $m_l = 1$, $m_s = -1/2$

Which set of quantum numbers for two electrons in a 3p subshell is the ground state?

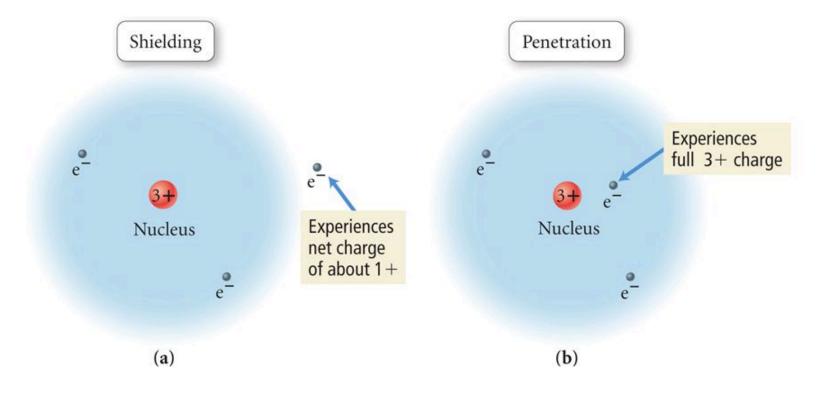

A.
$$m_l = 1$$
, $m_s = 1/2$ and $m_l = 0$, $m_s = -1/2$
B. $m_l = 1$, $m_s = 1/2$ and $m_l = -1$, $m_s = 1/2$
C. $m_l = 1$, $m_s = 1/2$ and $m_l = 0$, $m_s = 1/2$
D. $m_l = 1$, $m_s = 1/2$ and $m_l = 1$, $m_s = -1/2$

Hund's Rule III

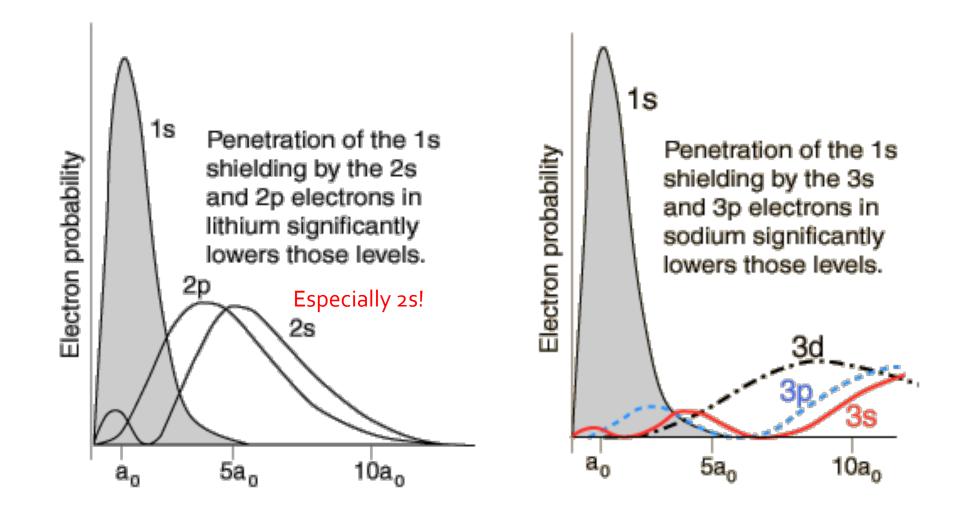
 Spin-Orbit coupling lowers energy levels where L and S are anti-aligned and raises those where they are aligned

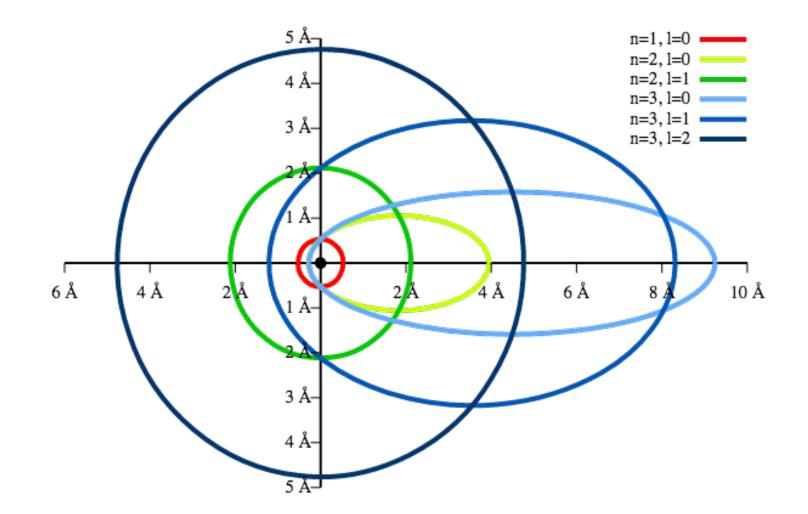


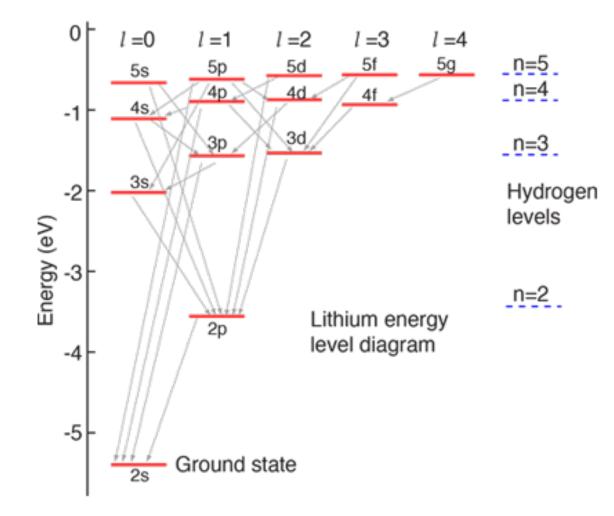
Energy Levels



- Lithium has three protons (and four neutrons) in the nucleus, surrounded by three electrons. For the outermost electron (well outside of the inner two), what does the nuclear charge appear to be?
- 0 ■ ~ +e ■ ~ +2e
- ~ +3e

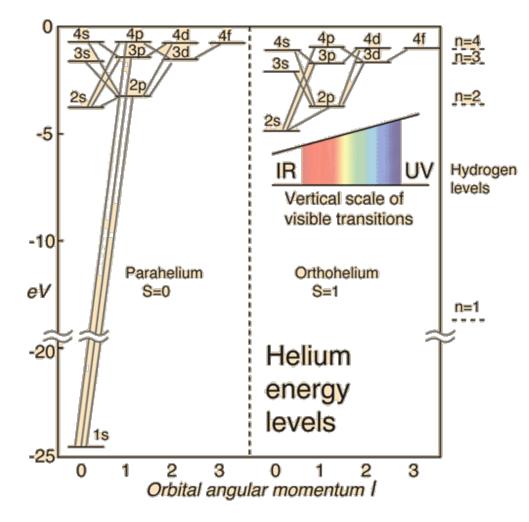

 Lithium has three protons (and four neutrons) in the nucleus, surrounded by three electrons. For the outermost electron (well outside of the inner two), what does the nuclear charge appear to be?


Penetration and Shielding


Penetrating Orbits

Penetrating Orbits

Lithium (Z=3) Transitions


- The binding energy of hydrogen (one electron in 1s orbital) is 13.6 eV. Helium has two 1s electrons. Would you expect the binding energy of each electron to be...
- Less than for hydrogen?
- Equal to hydrogen?
- Greater than for hydrogen?

- The binding energy of hydrogen (one electron in 1s orbital) is 13.6 eV. Helium has two 1s electrons. Would you expect the binding energy of each electron to be...
- Less than for hydrogen?
- Equal to hydrogen?
- Greater than for hydrogen?

plium En for Z = 2 w/ nº screening $E_n = -13.6 \frac{Z^2}{n^2}$ = -54.4/n² En w/ perfect screening Zeff = 1 En = -13.6/uz $Actual E_1 = -25.4$ Characterite as E, = - 13.6 teft

>> Zeff ~ 1.37 2nd electron screens ~ 31 % of nuclear charge

Helium (Z=2) Transitions

