

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Midterm II Is a Wrap

- Mean of 34 people who took the test
 69/100
- Mean of entire class including 2 absentees
 - **6**5/100

Midterm II Scores

Combined Exam Scores

Very Approximate Grade Equivalents from CLAS Curve (Does Not Include Labs, HW, or Participation Extra Credit!!!)

Q1 Key Points

Q2 Key Points

$$\frac{-\hbar^2}{2m}\frac{d^2\Psi(x)}{dx^2} + U(x)\Psi(x) = E\Psi(x)$$

- Schrödinger equation must be satisfied for all values of x
 - All terms that don't depend on x must cancel, and all terms with a given power of x must cancel

Q3 Key Points

- Bohr energies proportional to Z²/n²
- Photon energies proportional to the difference in Bohr energies
- Longest wavelength <-> smallest energy change

Q4 Key Points

Q5 Key Points

$$\langle r \rangle = \int_0^\infty r P(r) dr$$

Q6 Key Points

- All angular probability densities are constant with azimuthal angle since |e^{imφ}| = 1
- Direction of angular momentum is not the same as location of maximum probability!

Orbital and Spin Magnetic Moment

Orbital and Spin Magnetic Moment

$$\mu_{B} = \frac{e\hbar}{2m_{e}} = 9.2740154 \times 10^{-24} J / T = 5.7883826 \times 10^{-5} eV / T$$

Bohr magneton

$$Orbital \qquad \mu_L = -g_L \frac{e}{2m_e} L$$

-

$$\mu_{Lz} = -g_L \frac{e\hbar}{2m_e} m_\ell = -m_\ell \mu_B$$

since
$$g_L = 1$$

Spin
$$\mu_S = -g_S \frac{e}{2m_e} S$$

$$\mu_{Sz} = -g_S \frac{e\hbar}{2m_e} m_s = -2m_s \mu_B = \pm \mu_B$$
$$g_S = 2.0023 \approx 2$$

Magnetic Moment in Magnetic Field

Concept Check

- An electron is in the n = 2, l = 1 orbital. An external magnetic field is in the +Z direction. For which m_l is the electron energy lowest?
- A. -1
- **B. O**
- **C**. 1
- D. All same

Concept Check

An electron is in the n = 2, l = 1 orbital. An external magnetic field is in the +Z direction. For which m_l is the electron energy lowest?

Zeeman Effect

Magnetogram

2018/04/05 13:00:00

2017/04/05 12:10:38

"Anomalous" Zeeman Effect

Electron Spin Resonance

Spin-Orbit Coupling

Electron orbit around proton causes field B in electron frame.

This leads to a shift in energy due to interaction of the electron spin magnetic moment with B.

Spin moment aligned (spin anti-aligned) with B has lower energy.

Spin-Orbit Coupling

Spin-Orbit Level Splitting

