

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Announcements

- Midterm II in class Wednesday
- Covers Ch. 5-7 (minus exclusions listed on Friday)
- Same policies as Midterm I
- Practice Midterm II solutions now posted

Schrödinger Equation

Time-Dependent

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+U(x) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, t)}{\partial t}
$$

$$
\mathrm{U}(\mathrm{x}) \text { constant }
$$ in time

Time-Independent

$$
\frac{-\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}}+U(x) \Psi(x)=E \Psi(x)
$$

Valid Wave Functions

$-\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}$ with $\omega=\mathrm{E} / \hbar$ (Time-independent $\mathrm{U}(\mathrm{x})$)
$\Psi^{*}(x, t) \Psi(x, t)=$ probability of finding particle at x at time t provided the wavefunction is normalized.
$\int \Psi^{*} \Psi d r=1$

Wave functions must be continuous in value (always) and in slope (unless the potential energy is infinite).

Traveling Wave: Constant Potential ($\mathrm{E}>\mathrm{U}_{0}$)

$$
\begin{aligned}
& \psi(x)=A_{1} \sin (k x)+B_{1} \cos (k x) \\
& \text { or } \psi(x)=A_{2} e^{i k x}+B_{2} e^{-i k x} \quad \mathrm{k}=\sqrt{ }\left[2 m\left(E-U_{0}\right)\right] / \hbar
\end{aligned}
$$

Real, Imaginary, Magnitude

Evanescent Wave: Constant Potential ($\mathrm{E}<\mathrm{U}_{0}$)

$$
\begin{aligned}
& \psi(\mathrm{x})=\mathrm{Ce}^{\mathrm{kx}} \text { or } \mathrm{De}^{-\mathrm{kx}} \\
& \mathrm{k}=\sqrt{ }\left[2 \mathrm{~m}\left(\mathrm{U}_{0}-\mathrm{E}\right)\right] / \hbar
\end{aligned}
$$

Tunneling

Infinite Square Well

Infinite -> Finite Square Well

Concept Check

Which potential well
would this wave function make sense for?

Concept Check

Which potential well
would this wave function make sense for?

Asymmetric Well

Harmonic Oscillator

Atomic Models

Thomson "Plum Pudding" Model

Bohr Model

Model

Rutherford Scattering

$$
\begin{aligned}
& \text { Impact Parameter } \\
& \qquad b=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Z e^{2} \cot \frac{\theta}{2}}{E} \frac{\mathrm{z}}{2}
\end{aligned}
$$

Closest Approach (b=o)

$$
E=\frac{1}{2} m v^{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{z e Z e}{d}
$$

$$
d=\frac{z Z e^{2}}{4 \pi \varepsilon_{0} K}
$$

Rutherford Scattering

$$
N(\theta)=\frac{n t}{4 r^{2}}\left(\frac{z Z}{2 K}\right)^{2}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{1}{\sin ^{4}\left(\frac{1}{2} \theta\right)}
$$

$N=$ scattered flux
$\mathrm{n}=$ target density
$t=$ thickness of target
$r=$ detector distance
$\mathrm{K}=$ projectile energy $\theta=$ scattering angle

Bohr Model for Hydrogenic Atoms

Emission/Absorption Spectrum

$$
\begin{aligned}
& h v=\frac{Z^{2} m e^{4}}{8 h^{2} \varepsilon_{0}^{2}}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] \\
& \frac{1}{\lambda}=\frac{v}{c}=\frac{E_{i}-E_{f}}{c h}=\frac{E_{0}}{c h}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) \\
& =\frac{m_{e} e^{4}}{4 c \pi \hbar^{3}\left(4 \pi \varepsilon_{0}\right)^{2}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \equiv R_{\infty}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)
\end{aligned}
$$

From Bohr model:

$$
\Delta \mathrm{E}=\mathrm{hv}=13.6\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right] \mathrm{ev}
$$

$$
\lambda=\frac{c}{v}
$$

Paschen Series' : (Infrared)
486.1 nm

From 1-d to 3-d Standing Waves!

Spherical Schrödinger Equation

Hydrogen Atom: Separation of Variables Solution

$$
U(r)=\frac{-e^{2}}{4 \pi \varepsilon_{0} r}
$$

$$
\Psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

$$
\Phi(\phi)=A e^{i m_{\ell} \phi} \quad m_{\ell}=-\ell,-\ell+1, \ldots+\ell
$$

$$
\Theta_{\ell m}(\theta)=N_{\ell m} P_{n}^{m}(\cos \theta) \quad \ell=0,1,2,3, \ldots n-1
$$

$$
R_{n, l}=r^{l} L_{n, l} e^{-r / n a_{0}} \quad n=1,2,3, \ldots
$$

Quantum Numbers and Electron Orbital Properties

$$
E_{n}=\frac{-m e^{4}}{8 \varepsilon_{0}^{2} h^{2}} \frac{1}{n^{2}}=\frac{-13.6 \mathrm{eV}}{n^{2}} \quad n=1,2,3, \ldots
$$

$$
L^{2}=\ell(\ell+1) \hbar^{2}
$$

$$
L_{z}=m_{\ell} \hbar
$$

S = spin
electron spin

Rotational

$$
S_{Z}=m_{s} \hbar, \quad m_{s}= \pm \frac{1}{2}
$$

Angular
Momentum

Angular Momentum

Concept Check

- Consider an electron in the $l=2, m_{l}=2$ orbital. Where would this electron be most likely to be found?
A. Near the z-axis
B. Near the $x-y$ plane
C. Equally likely to be found anywhere
D. Not enough information

Concept Check

- Consider an electron in the $l=2, m_{l}=2$ orbital. Where would this electron be most likely to be found?
A. Near the z-axis
B. Near the x-y plane
C. Equally likely to be found anywhere
D. Not enough information

Angular Probability Distribution

Radial Probability Distribution

Maximum probability radius where $d / d r(P(r))=0$
Average radius: $\quad\langle r\rangle=\int_{0}^{\infty} r P(r) d r$

