

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Models of the Atom

Schrödinger Equation for Hydrogen

$$
\begin{gathered}
\boldsymbol{E} \boldsymbol{\psi}=-\frac{\boldsymbol{h}^{2}}{2 m} \nabla^{2} \boldsymbol{\psi}-\frac{\boldsymbol{e}^{2}}{\boldsymbol{4} \pi \mathcal{E}} \boldsymbol{r} \boldsymbol{\psi} \\
-\frac{\hbar^{2}}{2 m_{r}}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right] \Psi(r, \theta, \phi) \\
-\frac{q^{2}}{4 \pi \varepsilon_{0} r} \Psi(r, \theta, \phi)=E \Psi(r, \theta, \phi)
\end{gathered}
$$

Laplacian in Spherical Coordinates

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin (\theta)} \frac{\partial}{\partial \theta}\left(\sin (\theta) \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2}(\theta)} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

Concept Check

- Given an equation $f(x)=g(y)$ that is true for all values of the independent variables x and y, what *must* be true of the functions f and g ?
A. Both functions are equal to zero
B. Both functions are polynomials
C. Both functions are constant
D. This equation cannot be solved

Concept Check

- Given an equation $f(x)=g(y)$ that is true for all values of the independent variables x and y, what *must* be true of the functions f and g ?
A. Both functions are equal to zero
B. Both functions are polynomials
C. Both functions are constant
D. This equation cannot be solved

Hydrogen Atom
Time - Independent Schrödinger E_{q}.

$$
1-\alpha:-\hbar^{2} / 2 m d^{2} \psi / d x^{2}+U(x) \psi(x)=E \psi(x)
$$

3-d: $-\hbar^{2} / 2 m \nabla^{2} \psi+U(\vec{r}) \psi(\vec{r})=E \psi(\vec{r})$
cartesian: $\nabla^{2}=\partial^{2} \partial x^{2}+\frac{\partial}{\partial} / \partial y^{2}+\frac{\partial}{2} / \partial z^{2}$
spherical: $\nabla^{2}=1 / v^{2} 2 / \Delta r\left(v^{2} / a r\right)^{\prime \prime}$

$$
\begin{aligned}
& +1(r \sin \theta) 2 / 2 \theta(\sin \theta 2 / \partial \theta) \\
& +1\left(r^{2} \sin ^{2} \theta\right){ }^{2} 20 x^{2}
\end{aligned}
$$

H atom $u(\vec{r})=-e^{2} / 4 \pi \varepsilon_{0} r$

$$
\begin{aligned}
& \left.\Rightarrow-\hbar^{2} / 2 r^{2}\right)\left[2 / 2 r\left(r^{2} \partial \psi / 2 r\right)+\frac{1}{\sin \theta} 2 / 2 \theta(\sin \theta 2 \%)\right. \\
& \left.+1 / \sin ^{2} \theta \sqrt{2} \psi / \rho^{2} \varphi^{2}\right] \\
& -e^{2} / 4 \pi \cdot . r \psi^{\varphi}=E \psi
\end{aligned}
$$

Use separation of Variables

$$
\begin{aligned}
& \psi(r, \theta, \varphi)=R(r) \Theta(\theta) \Phi(\phi) \\
& \Rightarrow-\frac{\hbar^{2}}{2 m r^{2}}\left[\frac{2}{2 r}\left(r^{2} \partial R / a r\right) \theta \Phi\right. \\
& +\frac{1}{1 / 20}+2 / 20(\sin \theta \partial \theta / \theta \theta)-R \cdot \Phi \\
& \left.+1 \sin ^{2} \theta^{2} \Phi \Phi_{0} / \phi_{0} \cdot R \theta\right] \\
& -\mathrm{e}^{2} / 4 \pi \mathrm{rar} \cdot R \theta \Phi=E R \Theta \Phi
\end{aligned}
$$

- Divide by $R \Theta \Phi$
- Multiply by $2 \mathrm{mr}^{2} / \hbar^{2}$

$$
\begin{aligned}
& -\left[\frac{1}{R} \lambda / a r\left(r^{2} \partial R / \partial r\right)+\frac{1}{\theta \sin \theta} \lambda / d \theta(\sin \theta \partial \theta / \partial \theta)\right. \\
& \left.+\frac{1}{a \sin ^{2} \theta} d^{2} \Phi \sigma_{\phi^{2}}\right]-\frac{m e^{2} r}{2 \pi \cdot \hbar^{2}}=\frac{2 m E r^{2}}{\hbar^{2}} \\
& \Rightarrow \frac{1}{R} \lambda / a r\left(r^{2} \lambda R / a r\right)+\frac{m e^{2} r}{2 \pi \sum \hbar^{2}}-\frac{2 m E}{\hbar^{2}} r^{2} \\
& =-\left[\frac{1}{\theta} \sin \theta 2 / d \theta(\sin \theta \partial \theta / \partial \theta)+\frac{1}{x \sin ^{2} \theta} \partial^{2} A / \Delta p^{2}\right]
\end{aligned}
$$

- LHS depends only on \sim
- RHS depends on Θ / ∞
- True for all re on
\Rightarrow both sides must be constant
Write constant $=C_{l}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\theta \sin \theta} d / d \theta(\sin \theta \lambda \theta \theta \theta)+\frac{1}{\Phi \sin ^{2} \theta} \lambda^{2} \Phi / \Delta \phi_{\phi^{2}} \\
& =-C_{l} \\
& \Rightarrow \frac{\sin \theta}{\theta} \frac{2}{2} / \theta(\sin \theta 2 \theta / \partial \theta)+\frac{1}{\Phi} 2^{2} \frac{\Phi}{\Delta \rho^{2}} \\
& =-C_{l} \sin ^{2} \theta \\
& \Rightarrow \frac{\sin \pi}{\theta} \frac{2}{2} / \theta(\sin \theta 2 \theta / \partial \theta)+C_{l} \sin ^{2} \theta \\
& =-\frac{1}{\Phi} d^{2} \pi / \operatorname{lop}^{2}
\end{aligned}
$$

LHS depends on θ, RHS on ∞, so both are constant

- Write second constant $=C_{m}$
- Three ODEs for R, Θ, Φ

$$
\begin{gathered}
1 / R d / d r\left(r^{2} d R / d r\right)+\frac{m e^{2} r}{2 \pi r \hbar^{2}}+\frac{2 m E}{\hbar^{2}} r^{2}=C_{l} \\
\frac{\sin \theta}{\theta} d / d \theta(\sin \theta d \theta / d \theta)+C_{l} \sin ^{2} \theta=C_{m} \\
-1 / \Phi \lambda^{2} \Phi / d \varphi^{2}=C_{m}
\end{gathered}
$$

Az imuthal wave function

$$
\lambda^{2} \Phi / \partial p^{2}=-C m \Phi
$$

Rewrite $C_{m}=m_{l}^{2}$

$$
\begin{aligned}
& \lambda^{2} \Phi / \lambda p^{2}=-m_{l}^{2} \Phi \\
& \Rightarrow \Phi(\phi)=A e^{i m_{l} \varphi}
\end{aligned}
$$

To satisfy continuity

$$
\begin{aligned}
& \Phi(p)=\Phi(p+2 \pi) \\
\Rightarrow & m_{l}=0 \pm 1, \pm 2, \ldots
\end{aligned}
$$

Normalization: $\int_{0}^{2 \pi}|\Phi|^{2} d \varphi p=\int_{0}^{2 \pi} A e^{\text {imp }} e^{- \text {imp }} d \phi$

$$
=2 \pi R^{2}=1
$$

$$
\Rightarrow \Phi(\varphi)=\frac{1}{\sqrt{2 \pi}} e^{i m_{R} \varphi}
$$

Azimuthal Wave Function

Azimuthal symmetry of wave functions

- Azimuthal wave function $\mathrm{e}^{\mathrm{im} \phi}$
- Azimuthal probability density $\mathrm{e}^{i m \phi} \mathrm{e}^{-\mathrm{im} \mathrm{\phi}}=1$
- Probability of finding electron is azimuthally symmetric for pure wave function
- Same as for the circular orbits of the Bohr model!

Polar Wave Function

$$
\begin{aligned}
& \frac{\sin \theta}{\theta} d / d \theta(\sin \theta d \theta / d \theta)+C_{l} \sin ^{2} \theta=C_{m} \\
&=m_{l}^{2} \\
& \Rightarrow \frac{1}{\sin \theta} d / d \theta(\sin \theta d \theta / d \theta)-\frac{m_{l}^{2} \theta}{\sin ^{2} \theta}+C_{l} \theta=0
\end{aligned}
$$

Solutions are $A P_{l}^{m}(\cos \theta)$

- P_{e}^{m} are Legendre polynomials
- For valid solution
$\begin{aligned} C l & =l(l+1) \\ \text { and } m_{l} & =-l,-l+1, \cdots, l-1, l\end{aligned}$

$$
\theta(\theta)=A P_{l}^{n}(\cos \theta)
$$

(A determined by normalization

$$
\int_{0}^{\pi}|\theta|^{2} d \theta=1
$$

Legendre Polynomials

associated legendre functions (normalized)

Table 6-2
The First Few Associated Legendre Functions $P_{1}^{|m|}(x)$
$-I=0$

- $1=1$
- $I=2$
$-I=3$
$-1=4$
$P_{0}^{0}(x)=1$
$P_{1}^{0}(x)=x=\cos \theta$
$P_{1}^{1}(x)=\sqrt{1-x^{2}}=\sin \theta$
$P_{2}^{0}(x)=1 / 2\left(3 x^{2}-1\right)=1 / 2\left(3 \cos ^{2} \theta-1\right)$
$P_{2}^{1}(x)=3 x \sqrt{1-x^{2}}=3 \cos \theta \sin \theta$
$P_{2}^{2}(x)=3\left(1-x^{2}\right)=3 \sin ^{2} \theta$
$P_{3}^{0}(x)=1 / 2\left(5 x^{3}-3 x\right)=1 / 2\left(5 \cos ^{3} \theta-3 \cos \theta\right)$
$P_{3}^{1}(x)=3 / 2\left(5 x^{2}-1\right)\left(1-x^{2}\right)^{1 / 2}=3 / 2\left(5 \cos ^{2} \theta-1\right) \sin \theta$
$P_{3}^{2}(x)=15 x\left(1-x^{2}\right)=15 \cos \theta \sin ^{2} \theta$
$P_{3}^{3}(x)=15\left(1-x^{2}\right)^{3 / 2}=15 \sin ^{3} \theta$
Not normalized

Spherical Harmonics

Angular Probability Density

$$
s: l=0
$$

$\longrightarrow_{\left|Y_{0}^{0}(\theta, \phi)\right|^{2}}$
$p: l=1$
$d: l=2$

$$
f: l=3
$$

$\left|Y_{2}^{0}(\theta, \phi)\right|^{2}$
$\left|Y_{2}^{1}(\theta, \phi)\right|^{2}$

$\left|Y_{3}^{0}(\theta, \phi)\right|^{2} \quad\left|Y_{3}^{1}(\theta, \phi)\right|^{2} \quad\left|Y_{3}^{2}(\theta, \phi)\right|^{2} \quad\left|Y_{3}^{3}(\theta, \phi)\right|^{2}$
$\left|Y_{3}^{0}(\theta, \phi)\right|^{2} \quad\left|Y_{3}^{1}(\theta, \phi)\right|^{2} \quad\left|Y_{3}^{2}(\theta, \phi)\right|^{2} \quad\left|Y_{3}^{3}(\theta, \phi)\right|^{2}$

