

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Models of the Atom

Thomson Atom

Thomson's Plum pudding model

Thampson Scattering

E in uniform sphere

$$
\begin{aligned}
& E=\frac{Q r}{4 \pi \varepsilon_{0} R^{3}} \\
& F=q E=\frac{2 z e^{2} r}{4 \pi \varepsilon_{0} R^{3}} \\
& \langle F\rangle \sim \frac{2 z e^{2} R / 2}{4 \pi \varepsilon_{0} R^{3}}=\frac{z e^{2}}{4 \pi \varepsilon_{0} R^{2}}
\end{aligned}
$$

Impulse - Momentum

$$
\begin{aligned}
& \Delta \rho=\langle F\rangle \Delta t \\
& \Delta t \sim R / V \\
& \Delta \rho \sim \frac{z e^{2}}{4 \pi \xi_{0} R V} \\
& \begin{aligned}
\Delta \rho / \Delta \rho \quad \Theta & \sim \Delta \rho / \rho \\
& =\frac{z e^{2}}{4 \pi \xi_{0} R V} \cdot \frac{1}{m_{a} V} \\
& =\frac{z e^{2}}{8 \pi \varepsilon_{0} R \cdot K a}
\end{aligned}
\end{aligned}
$$

R of gold atom $\sim 0.18 \mathrm{~nm}$
z af gold atom $=79$
K inetic energy of $\alpha \sim 5$ MeV

$$
\begin{aligned}
& \theta \sim \frac{79-\left(1.6 \times 10^{-19}\right)^{2}}{8 \cdot \pi \cdot 8.85 \times 10^{-12} \cdot 2 \times 10^{-10} \cdot 5 \times 10^{6} \cdot 1.6 \times 10^{-19}} \\
& \underbrace{7 \times 10^{-s} \text { radians }}_{- \text {Each scatter is }} \\
& \text { very small!! }
\end{aligned}
$$

Thomson Scattering Simulation

https://phet.colorado.edu/en/simulation/rutherford-scattering

Concept Check

- For each interaction, alpha particles scatter by $\sim 10^{-4}$ radians. If each alpha interacts with 10^{4} gold atoms while passing through a foil, what is the chance of an alpha particle scattering by a total of one radian?
A. 1
B. $1 / 2^{10}$
C. $1 / 2^{100}$
D. $1 / 2^{10000}$

Concept Check

- For each interaction, alpha particles scatter by $\sim 10^{-4}$ radians. If each alpha interacts with 10^{4} gold atoms while passing through a foil, what is the chance of an alpha particle scattering by a total of one radian?
A. 1
B. $1 / 2^{10}$
C. $1 / 2^{100}$
D. $1 / 2^{10000}$

Alpha Particle Scattering Results

Alpha Particle Scattering

- "It was as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you"
- Ernest Rutherford

Alpha Particle Scattering Interpretation

Rutherford Scattering Simulation

https://phet.colorado.edu/en/simulation/rutherford-scattering

Rutherford Scattering

Rutherford scattering

$$
\begin{aligned}
& U(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r}=\alpha / r \\
& E=1 / 2 m v_{r}^{2}+1 / 2 m v_{\varphi}^{2}+U(r)=\text { coast. }
\end{aligned}
$$

$$
L=m V_{p p} r=\text { angular momentum }
$$

$E(\infty)=K=$ initial kinetic energy

$$
\begin{aligned}
K & =1 / 2 m v^{2}+\frac{L^{2}}{2 m r^{2}}+a / r \\
& =1 / 2 m \dot{r}^{2}+L \frac{L^{2} / 2 m r^{2}}{}+\frac{\alpha}{r}
\end{aligned}
$$

$$
\begin{aligned}
\dot{r}=d r / d t & =d r / d \rho \cdot d \rho / d t \\
& =d r / d \varphi \cdot L / m r^{2}
\end{aligned}
$$

$$
u=1 / r \rightarrow d u=-1 / r^{2} d r
$$

$$
\Rightarrow \dot{r}=-\frac{d u / d \varphi}{d \rho} \cdot L / m
$$

$$
K=\frac{L^{2}}{2 m}\left(d u / d_{p}\right)^{2}+\frac{L^{2}}{2 m} u^{2}+a u
$$

Take $d / d o p$

$$
\begin{aligned}
& \Rightarrow C=\frac{L^{2}}{m} d u / d p^{-} \cdot d^{2} u / d p^{2}+\frac{L^{2}}{m} u d u / d p_{0} \\
&+a d u / d \rho_{0} \\
& \Rightarrow L^{2} / m d^{2} u / d \rho^{2}+\frac{L^{2}}{m} u+a=0
\end{aligned}
$$

$$
\Rightarrow \quad d^{2} u / d p^{2}+u=-a m / L^{2}
$$

Solution:

$$
[1-\varepsilon \cos \varphi n]
$$

Want relation bethe en and A
(impact purmet or

- \& scattering, angle)

$$
\begin{aligned}
& \theta=\pi-\Delta \varphi \\
& =\pi-2 \rho_{m} \\
& K=\frac{L^{2}}{2 m}(d u / d q)^{2}+\frac{L^{2}}{2 m} u^{2}+a u \\
& d u / d \varphi=-\frac{a m}{L^{2}} \varepsilon \sin \varphi \\
& \Rightarrow K=\frac{L^{2}}{2 m}\left(\frac{a m \varepsilon}{L^{2}}\right)^{2} \sin ^{2} \varphi \\
& +L / 2 m\left(\frac{a m}{L^{2}}\right)^{L}(1-\varepsilon \cos \alpha p)^{2} \\
& -\frac{a^{2} m}{L^{2}}(1-\varepsilon \cos \phi) \\
& =\frac{a^{2} m}{L^{2}}\left[\frac{1}{2} \varepsilon^{2} \sin ^{2} \phi+\frac{1}{2}-\varepsilon \cos \varphi \phi\right. \\
& \left.+1 / 2 \varepsilon^{2} \cos ^{2} \phi-1+\varepsilon \cos \phi\right] \\
& =\frac{a^{2} m}{L^{2}}\left[1 / 2 \varepsilon^{2}-1 / 2\right] \\
& \Rightarrow \varepsilon=\sqrt{1+\frac{2 K L^{2}}{a^{2} m}} \\
& L=m v_{0} b=\sqrt{2 m k} b \\
& \Rightarrow \varepsilon=\sqrt{1+4 k^{2} b^{2} / a^{2}}
\end{aligned}
$$

So

$$
\begin{array}{r}
u\left(\phi^{0}\right)=\frac{a}{2 k b^{2}}[\varepsilon \cos \phi-1] \\
w / \varepsilon=\sqrt{1+4 k^{2} b^{2} / a^{2}} \\
\Rightarrow 1+\frac{2 k b^{2} u}{a}=\varepsilon \cos \varphi p \\
\Rightarrow \cos \phi=\frac{1+\frac{2 k b^{2} u}{a}}{\sqrt{1+4 k^{2} b^{2} / a^{2}}}
\end{array}
$$

Solve for $\phi_{m}=\frac{\pi-\theta}{2}\left[\begin{array}{lll}u & \rightarrow 0 \\ r>\infty\end{array}\right]$

$$
\begin{gathered}
\cos \varphi_{m}=1 / \sqrt{1+4 k^{2} b^{2} / a^{2}} \\
\cos \left(\frac{\pi}{2}-\theta / 2\right)=\sin (\theta / 2) \\
\Rightarrow \sin (\theta / 2)=1 / \sqrt{1+4 k^{2} b^{2} / a^{2}} \\
\Rightarrow \frac{4 u^{2} b^{2}}{a^{2}}=\frac{1}{\sin ^{2}(\theta / 2)}-1 \\
=\cot ^{2}(\theta / 2) \\
\Rightarrow b=\frac{a}{2 k} \cot (\theta / 2) \\
\Rightarrow b=\frac{z z c^{2}}{8 \pi \varepsilon_{0} k} \cot (\theta / 2)
\end{gathered}
$$

Rutherford Scattering

