

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Actual Wave Function

Wave Function Components

How Can This be So?

- Did we violate conservation of energy...?
- Did we violate conservation of momentum...?

Evanescent Wave

$$
k_{2}=\sqrt{\frac{2 m}{n^{2}}\left(u_{m}-E\right)}
$$

$$
\Delta x=\sigma_{x} \sim \frac{1}{2 k_{2}}=\frac{\hbar}{2 \sqrt{2 m\left(u_{m}-\xi\right)}}
$$

e-folding distance
of $|\psi(x)|^{2}$
$\Delta E \Delta t \sim \hbar$

$$
\begin{aligned}
\Rightarrow \Delta t^{4} & =\hbar / \Delta E \\
& =\hbar /\left(u_{m}-E+k\right)
\end{aligned}
$$

$-\Delta E$ to give energy K in "forbidden region"

$$
\begin{gathered}
v=\sqrt{2 k / m} \stackrel{\Delta x}{\Delta x=1 / 2 v \Delta t}
\end{gathered}
$$

$$
\Delta x=1 / 2 \sqrt{\frac{2 k}{m}} \frac{\hbar}{u_{m}-\kappa+k}
$$

Find $\Delta X_{\max }$ ty setting

$$
\begin{aligned}
& d / d K(\Delta x)= 0 \\
& d / d k(\Delta x)=\frac{1}{\sqrt{2 m}}\left(\frac{1}{2 \sqrt{k}} \cdot \frac{\hbar}{u_{m}-E+K}\right. \\
&\left.-\sqrt{k} \frac{\hbar}{\left(u_{m}-E+K\right)^{2}}\right) \\
& \Rightarrow 2 \frac{1}{\sqrt{k}} \cdot \frac{1}{u_{m}-E+k}=\sqrt{k}-\frac{1}{\left(U_{m}-E+K\right)^{2}} \\
& \Rightarrow \quad u_{m}-E+K=2 K \\
& \Rightarrow \quad K=u_{m}-E \\
& \Rightarrow \Delta x_{m a x}= \frac{1}{2} \sqrt{\frac{2\left(u_{m}-E\right)}{m} \cdot \frac{\hbar}{2\left(u_{m}-E\right)}} \\
&= \hbar / 2 \cdot \frac{1}{\sqrt{2 m\left(u_{m}-E\right)}} \\
& \sigma x=\Delta x_{\max }
\end{aligned}
$$

- sa uncertainty principle allows this amount of penetration into classically forbidden region

Wave Across a Potential Wall

Tunneling!

Wave Packet Tunneling

Electron in a Finite Wire

but lot of e's move around to lowest PE

As more electrons fill in, potential energy for later ones gets flatter and flatter. For top ones, is VERY flat.

Electron in a Finite Wire

This is just the energy needed to remove them from the metal.
That is the work function!!

Finite Square Well

- $\mathrm{kT} \sim 0.025 \mathrm{eV} \ll 4.7 \mathrm{eV}$ so approximate $4.7 \mathrm{as} \infty$
$x<0, V(x)$ ~infinite
$x>L, V(x) \sim$ infinite
$0<x<L, V(x)=0$

Simplified approach means just have to solve:

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}=E \psi(x)
$$

with boundary conditions, $\psi(0)=\psi(\mathrm{L})=0$

Infinite Square Well Solution

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}=E \psi(x)
$$

functional form of solution: $\quad \psi(x)=A \cos (k x)+B \sin (k x)$

$$
\begin{aligned}
& \mathrm{x}=0 \rightarrow ? \quad \psi(0)=A \rightarrow \mathrm{~A}=\mathrm{o} \\
& \mathrm{x}=\mathrm{L} \rightarrow \quad \psi(L)=B \sin (k L)=0 \quad \mathrm{~kL}=\mathrm{n} \mathrm{\pi}(\mathrm{n}=1,2,3,4 \ldots) \\
& p=\hbar k=\hbar(n \pi / L) \\
& E=p^{2} / 2 m
\end{aligned}
$$

Energy Level Diagrams

Square Well Energy Spacing

$$
\begin{aligned}
& E_{1}=\pi^{2} \hbar^{2} /\left(2 m L^{2}\right) \\
& E_{2}=4 \pi^{2} \hbar^{2} /\left(2 m L^{2}\right) \\
& \Delta E_{12}=3 \pi^{2} \hbar^{2} /\left(2 m L^{2}\right)
\end{aligned}
$$

- Quantization important

$$
\begin{aligned}
& \text { if } \triangle E \sim K T \\
& 1.38 \times 10^{-23} \cdot 300=\frac{3 \cdot 3.1^{2} \cdot\left(1.1 \times 10^{-34}\right)^{2}}{2 \cdot 10^{-30}-L^{2}} \\
& \Rightarrow L^{2} \sim 3 \times 10^{-17} \mathrm{~m}^{2} \\
& L
\end{aligned}
$$

~ 2 so atoms long

Concept Check

- How does the probability of finding an electron at $x=L / 2$ for $n=3$ compare to the probability for $\mathrm{n}=2$?
A. Much more likely for $\mathrm{n}=3$
B. Much more likely for $\mathrm{n}=2$
C. Equally likely for $n=2$ or n
= 3

Concept Check

- How does the probability of finding an electron at $x=L / 2$ for $\mathrm{n}=3$ compare to the probability for $\mathrm{n}=2$?
A. Much more likely for $\mathrm{n}=3$
B. Much more likely for $\mathrm{n}=2$
C. Equally likely for $\mathrm{n}=2$ or n
= 3

First three wave functions

