

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Traveling Wave Solution

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x)}{\partial x^2} = E\psi(x) \qquad \psi(x) = A\exp(ikx)$$
$$\frac{\hbar^2k^2}{2m} = E$$
$$\Psi(x,t) = \psi(x)\phi(t) \qquad \phi(t) = e^{-iEt/\hbar}$$
$$\Psi(x,t) = A\exp[i(kx - \omega t)]$$

Traveling Wave Probability

 $If \quad u(x f) = u(x)$ $\mathbb{T}(x,t) = \mathbb{Y}(x)e^{-i\omega t}$ VV(x,t) 2 = $\psi^*(x) e^{i\omega t} \psi(x) e^{-i\omega t}$ $= \Psi^{*}(x) \Psi(x)$ = $|\Psi(x)|^2$ (no time dependence) = A^2 if $\Psi(x) = Ae^{ikx}$ -Not true it wave has multiple components i.e. $\mathcal{I}(x, 1) = A \mathcal{V}_1(x) e^{-iw_1 t}$ + $B \mathcal{V}_2(x) e^{-iw_2 t}$ $= A^{2} | \Psi_{i}(x)|^{2} + B^{2} | \Psi_{2}(x)|^{2}$ $+ AB \Psi_{i}^{*}(x)\Psi_{2}(x) e^{-i(m_{1}-m_{2})t}$ $+ AB \Psi_{2}^{*}(x)\Psi_{1}(x) e^{-i(m_{2}-m_{1})t}$ II (x,t) - Cross terms => beat patterns

Traveling Wave Functions

Traveling Wave Packet

Concept Check

Given the wave functions below, which free electron has more kinetic energy?

Concept Check

Given the wave functions below, which free electron has more kinetic energy?

Traveling Wave Functions

Traveling Wave Functions

2x momentum 4x kinetic energy

1. A small puck is gliding with initial speed v across a frictionless horizontal surface. It glides up a small hill and then moves on a horizontal surface that is a distance h above the first surface.

Which is the correct plot for the puck's potential energy?

1. A small puck is gliding with initial speed v across a frictionless horizontal surface. It glides up a small hill and then moves on a horizontal surface that is a distance h above the first surface.

2. An electron is moving with initial speed v inside a thin hollow metal tube. It emerges from the tube through a hole in a large metal plate and continues through a hole in a second plate into another thin tube. The two plates are connected across a battery of potential difference V.

Which is the correct plot for the electron's potential energy?

2. An electron is moving with initial speed v inside a thin hollow metal tube. It emerges from the tube through a hole in a large metal plate and continues through a hole in a second plate into another thin tube. The two plates are connected across a battery of potential difference V.

Which is the correct plot for the electron's potential energy?

Sharp Barrier Energy Diagram

Schrödinger Equation for constant potential $u(x) = U \neq 0$ $-\frac{\pi}{2m} \frac{\pi}{4x} \frac{\psi}{\psi} + U \frac{\psi}{\psi} = E \frac{\psi}{\psi}$ $-\frac{t^2}{2m} \frac{\partial^2}{\partial x^2} \psi = (E - u) \psi$ $\frac{\partial \psi}{\partial x^{i}} = -\frac{2n}{4} (E - u) \psi$ E > U: $v + \kappa^2 = \frac{2m(E-U)}{4^2}$ $\frac{\partial^2 \psi}{\partial x^2} = -\kappa^2 \psi$ solutions $\Psi(x) = e^{iux}, e^{-iux}$ E < U: put $\kappa^2 = \frac{2m(U-E)}{b^2}$ dittai = K2 V solutions $\Psi(X) = e^{XX}, e^{-XX}$ (i.e. e' e inx u/ imaginary K)

Step Potential U1- $\Psi(x) = A e^{ik_i x} + B e^{-ik_i x}$ on left $w/u = \sqrt{2m(E-U)/\hbar^2}$ $\Psi(x) = C e^{-\kappa_{1}x}$ on right $W/K_2 = \int 2m(U_2 - E)/k^2$

Wave Approaching a Potential Barrier

Actual Wave Function

Wave Function Components

