

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Announcements

- Back on regular schedule for the next two weeks - until Spring Break!
- There will be labs and homework due this week and next
- Labs this week and next are computer labs - meet in Van 201 rather than your usual lab room

Wave Equation

Electromagnetic waves:

$$
\frac{\partial^{2} E}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}
$$

$c=$ speed of light
Solutions: $\mathrm{E}(\mathrm{x}, \mathrm{t})$
Magnitude is non-spatial:
= Strength of electric field

Vibrations on a string:

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

$v=$ speed of wave
Solutions: $y(x, t)$
Magnitude is spatial:
$=$ Vertical displacement of string

A New Kind of Wave

EM Waves (light/photons)

- Amplitude $E=$ electric field
- $|E|^{2}$ tells you the probability of detecting a photon.
- Maxwell's Equations:

$$
\frac{\partial^{2} E}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}
$$

- Solutions are sine/cosine waves:

Matter Waves (electrons/etc)

- Amplitude $\Psi=$ matter field
- $|\Psi|^{2}$ tells you the probability of detecting a particle.
- Schrödinger Equation:
$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+U(x, t) \Psi=i \hbar \frac{\partial \Psi}{\partial t}$
- Solutions are complex sine/ cosine waves:

Wave Solutions

- EM Waves

$$
\begin{aligned}
& E(x, t)=A \sin (k x-\omega t) \\
& E(x, t)=A \cos (k x-\omega t)
\end{aligned}
$$

Wave Functions

$$
\begin{aligned}
& \Psi(x, t)=A \exp [i(k x-\omega t)] \\
& =A[\cos (k x-\omega t)+i \sin (k x-\omega t)]
\end{aligned}
$$

- In either case, wave packets can be formed by superposing waves with different k values.

How to Solve a Differential Equation

How to solve a differential equation in physics:

1) Guess functional form for solution
2) Make sure functional form satisfies Diff EQ (find any constraints on constants)

1 derivative: need 1 soln $\rightarrow f(x, t)=f_{1}$ 2 derivatives: need 2 soln $\rightarrow f(x, t)=f_{1}+f_{2}$
3) Apply all boundary conditions \longleftarrow The hardest part! (find any constraints on constants)

Concept Check: Solutions

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

1) Guess functional form for solution

Which of the following functional forms works as a possible solution to this differential equation?

$$
\begin{aligned}
& \text { I. } y(x, t)=A x^{2} t^{2} \\
& \text { II. } y(x, t)=A \sin (B x) \\
& \text { III. } y(x, t)=A \cos (B x) \sin (C t)
\end{aligned}
$$

a. I
b. III
c. II, III
d. I, III
e. None or some other combo

Concept Check: Solutions

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

1) Guess functional form for solution

Which of the following functional forms works as a possible solution to this differential equation?

$$
\begin{aligned}
& \text { I. } y(x, t)=A x^{2} t^{2} \\
& \text { II. } y(x, t)=A \sin (B x) \\
& \text { III. } y(x, t)=A \cos (B x) \sin (C t)
\end{aligned}
$$

a. I b. III
c. II, III
d. I, III
e. None or some other combo

Trial and Error

1) Guess functional form for solution

II. $y(x, t)=A \sin (B x)$

$$
y(x, t)=A \sin (B x)
$$

LHS: $\frac{\partial^{2} y}{\partial x^{2}}=-A B^{2} \sin (B x)$
RHS: $\quad \frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=0$

$$
\begin{gathered}
-A B^{2} \sin (B x)=0 \\
\sin (B x)=0
\end{gathered}
$$

III. $y(x, t)=A \cos (B x) \sin (C t)$

$$
\begin{array}{ll}
& y(x, t)=A \cos (B x) \sin (C t) \\
\text { LHS: } \quad & \frac{\partial^{2} y}{\partial x^{2}}=-A B^{2} \cos (B x) \sin (C t)
\end{array}
$$

RHS: $\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=-\frac{A C^{2}}{v^{2}} \cos (B x) \sin (C t)$

$$
\begin{aligned}
-A B^{2} \cos (B x) \sin (C t) & =\frac{-A C^{2}}{v^{2}} \cos (B x) \sin (C t) \\
B^{2} & =\frac{C^{2}}{v^{2}}
\end{aligned}
$$

Superposition of Solutions

$$
y(x, t)=A \sin (k x) \cos (\omega t)+B \cos (k x) \sin (\omega t)
$$

Equivalent $y(x, t)=C \sin (k x-\omega t)+D \sin (k x+\omega t)$

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

$$
\begin{aligned}
& y(x, t)=C \sin (k x-\omega t) \\
& -C k^{2} \sin (k x-\omega t)=-\frac{C \omega^{2}}{v^{2}} \sin (k x-\omega t)
\end{aligned}
$$

Satisfies wave eqn if: $\quad k^{2}=\frac{\omega^{2}}{v^{2}} \quad v=\frac{\omega}{k}=f \lambda$

Wave Number and Frequency

$$
y(x, t)=C \sin (k x-\omega t)+D \sin (k x+\omega t)
$$

What is the wavelength of this wave? Ask yourself ...
\rightarrow How much does x need to increase to increase kx-wt by 2π ?

$$
\begin{aligned}
& \sin (k(x+\lambda)-\omega t)=\sin (k x-\omega t+2 \pi) \\
& k(x+\lambda)=k x+2 \pi \\
& k \lambda=2 \pi \rightarrow k=\underline{2 \pi / \lambda}
\end{aligned}
$$

What is the period of this wave? Ask yourself...
\rightarrow How much does t need to increase to increase kx-wt by 2π ?

$$
\sin (k x-\omega(t+T))=\sin (k x-\omega t+2 \pi)
$$

Speed
$\omega \mathrm{T}=2 \pi \rightarrow \omega=2 \pi / \mathrm{T}$
$=2 \pi f$
$\omega=$ angular frequency

$$
v=\frac{\lambda}{T}=\frac{\omega}{k}
$$

Concept Check: Boundary Conditions

$y(x, t)=A \sin (k x) \cos (\omega t)+B \cos (k x) \sin (\omega t)$
Boundary conditions?
I. $y(x, t)=0 \quad$ at $x=0$ and $x=L$

At $x=0: y(x, t)=B \sin (\omega t)=0 \quad \rightarrow$ only works if $B=0$ $y(x, t)=A \sin (k x) \cos (\omega t)$
From $B C$ at $x=L$, what are possible values for k ?
a. k can have any positive or negative value
b. $\pi /(2 L), \pi / L, 3 \pi /(2 L), 2 \pi / L \ldots$
c. π / L
d. $\pi / L, 2 \pi / L, 3 \pi / L, 4 \pi / L \ldots$
e. $2 \mathrm{~L}, 2 \mathrm{~L} / 2,2 \mathrm{~L} / 3,2 \mathrm{~L} / 4, \ldots$.

Concept Check: Boundary Conditions

$y(x, t)=A \sin (k x) \cos (\omega t)+B \cos (k x) \sin (\omega t)$
Boundary conditions?
I. $y(x, t)=0 \quad$ at $x=0$ and $x=L$

At $x=0: y(x, t)=B \sin (\omega t)=0 \quad \rightarrow$ only works if $B=0$ $y(x, t)=A \sin (k x) \cos (\omega t)$
From $B C$ at $x=L$, what are possible values for k ?
a. k can have any positive or negative value
b. $\pi /(2 L), \pi / L, 3 \pi /(2 L), 2 \pi / L \ldots$
c. π / L
d. $\pi / L, 2 \pi / L, 3 \pi / L, 4 \pi / L \ldots$
e. $2 \mathrm{~L}, 2 \mathrm{~L} / 2,2 \mathrm{~L} / 3,2 \mathrm{~L} / 4, \ldots$.

Boundary Conditions

Which boundary conditions need to be satisfied?
I. $y(x, t)=0$ at $x=0$ and $x=L$
$y(x, t)=A \sin (k x) \cos (\omega t)+B \cos (k x) \sin (\omega t)$

At $x=0$:
$y=B \sin (\omega t)=0$
$\rightarrow \mathrm{B}=\mathrm{O}$

$$
\begin{aligned}
& y=A \sin (k L) \cos (\omega t)=0 \\
& \rightarrow \sin (k L)=0 \\
& \rightarrow k L=n \pi(n=1,2,3, \ldots) \\
& \rightarrow k=n \pi / L
\end{aligned}
$$

$$
y(x, t)=A \sin (n \pi x / L) \cos (\omega t)
$$

Origin of Quantization

With Wave on Violin String:
Find: Only certain values of k (and thus λ) allowed
\rightarrow because of boundary conditions for solution

Same as for electromagnetic wave in microwave oven:

Exactly same for electrons in atoms:

Concept Check

Case I: no fixed ends

Case II: one fixed end

Case III, two fixed ends:

For which of these cases, do you expect to have only certain frequencies or wavelengths allowed... that is for which cases will the allowed frequencies be quantized.
a. I only
b. II only
c. III only
d. more than one

Concept Check

Case I: no fixed ends

Case II: one fixed end

Case III, two fixed ends:

For which of these cases, do you expect to have only certain frequencies or wavelengths allowed... that is for which cases will the allowed frequencies be quantized.
a. I only
b. II only
c. III only
d. more than one

Quantum Mechanics

Electron bound
in atom (by potential energy)

Only certain energies allowed
Quantized energies
Boundary Conditions
\rightarrow standing waves

Free electron

Any energy allowed
No Boundary Conditions
\rightarrow traveling waves

Concept Check

- A confined electron m in a box has wave numbers $k=n \pi / L$. What are the allowed momenta and energy of the particle?
A. $\mathrm{p}=\mathrm{nh} /(2 \mathrm{~L}), \mathrm{E}=\mathrm{nhc} /(2 \mathrm{~L})$
B. $p=n h /(2 L), E=n^{2} h^{2} /\left(8 m^{L^{2}}\right)$
C. $p=h L /(n \pi), E=h c L /(n \pi)$
D. $p=h L /(n \pi), E=h^{2} L^{2} /\left(2 n^{2} \pi^{2}\right)$

Concept Check

- A confined electron m in a box has wave numbers $k=n \pi / L$. What are the allowed momenta and energy of the particle?
A. $p=n h /(2 L), E=n h c /(2 L)$
B. $p=n h /(2 L), E=n^{2} h^{2} /\left(8 m_{e} L^{2}\right)$
C. $p=h L /(n \pi), E=h c L /(n \pi)$
D. $p=h L /(n \pi), E=h^{2} L^{2} /\left(2 n^{2} \pi^{2}\right)$

Continuity of Waves

- At a finite boundary, a wave has to be continuous in both value and slope
- At an infinite boundary, a wave can be discontinuous in slope but still must be continuous in value

Single Pulse, Infinite Boundary

Single Pulse, Finite Boundary

Wave Transmission/Reflection

Incident, Reflected, Total
Transmitted

