

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Announcements

- Final exam is scheduled for Friday May 11 7:30-9:30 am in Van 70 (this room).
 - I'm certainly not happy either!
- Midterm #1 is next Wednesday 2/21 in class
 - Midterm #1 covers Ch. 1-4 in the book
 - Two practice exams have now been posted
 - Remember to put together your equation sheet
 - Next Monday is a review day

- The pace of class so far has been:
- A. Relativistic
- B. Too fast
- C. About right
- D. Too slow
- E. Like a rollercoaster

- On the material we've covered so far, I feel:
- A. Like a superior human being
- B. Pretty confident about everything
- Confident about some topics, not about others
- D. A bit shaky on most topics
- E. Completely lost

- The homework so far has been:
- A. Too much for 25% of the grade
- B. Too little for 25% of the grade
- About right
- D. We have homework?

- The labs so far have been:
- A. Interesting and useful
- B. Not interesting/not useful
- c. A mix
- D. I'm too distracted by Erik's awesome sweaters

- For an average lab report, I spend:
 - A. Less than 2 hours outside of lab time
 - B. 2-4 hours per lab report outside of lab time
 - 4-6 hours per lab report outside of lab time
 - D. 6-8 hour per lab report outside of lab time
 - E. More than 8 hours per lab report outside of lab time

Any thoughts/issues?

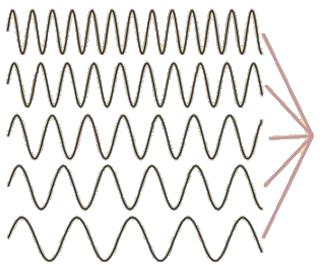
 If something's not going the way you want, it's not to late to fix it

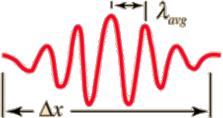
Heisenberg Uncertainty Principle(s)

$$\Delta p \ \Delta x \ \ge \frac{1}{2} \ \hbar$$

$$\Delta E \ \Delta t \ge \frac{1}{2} \ \hbar$$

Ehhh... not that one...


Uncertainty Principle Interpreted


A sine wave of wavelength λ implies that the momentum is precisely known.

But the wavefunction and the probability of finding the particle $P = \frac{h}{\lambda}$ Properties

Adding several waves of different wavelength together will produce an interference pattern which begins to localize the wave.

x-unknown

But that process spreads the momentum values and makes it more uncertain. This is an inherent and inescapable increase in the uncertainty Δp when Δx is decreased.

Plane Waves Vs. Wave Packets

$$\Psi(x,t) = A \exp\left[i\left(kx - \omega t\right)\right]$$

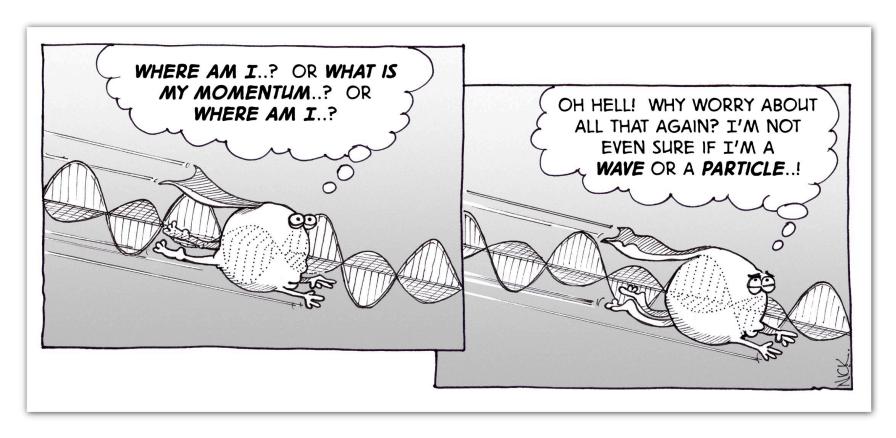
$$\Psi(x,t) = \sum_{n} A_{n} \exp\left[i\left(k_{n}x - \omega_{n}t\right)\right]$$

Wave Notation

Traveling waves

sin (KX - wt)

K = 21/2

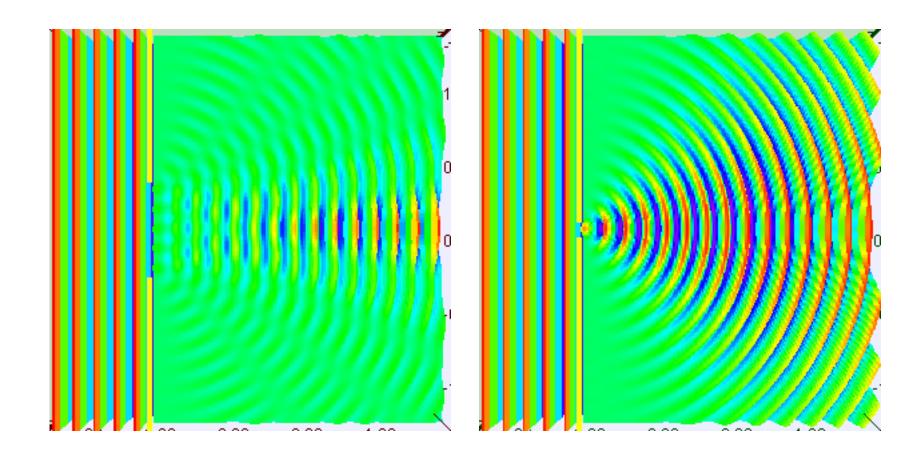

W = 2 T V

Note p = h/x

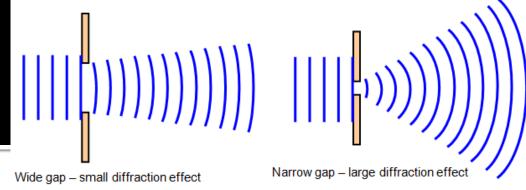
= h 1/27 = HK

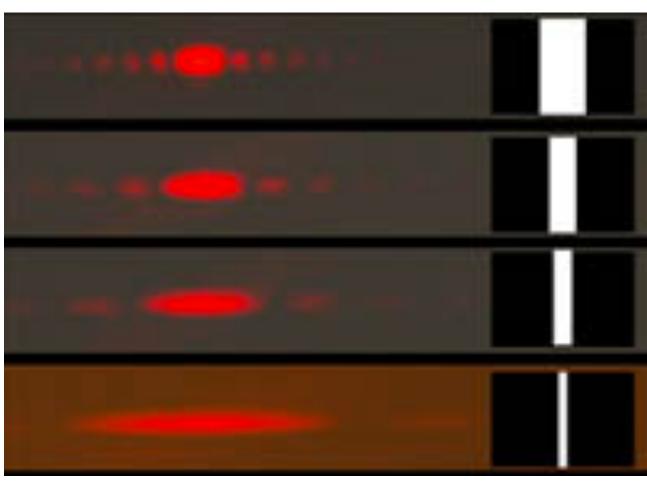
E = hV (for m = 0) = hW/2t = tW

Identity Problems

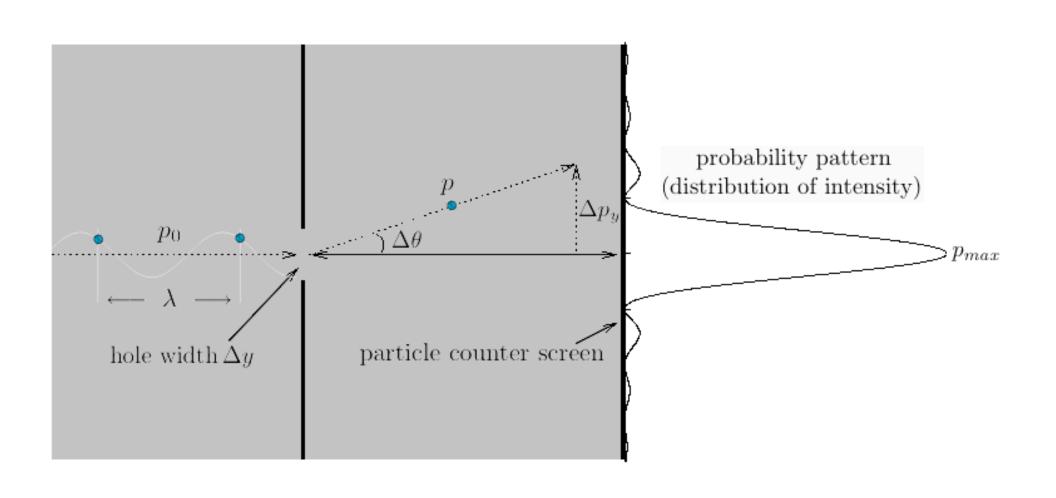

Photon self-identity issues

Important point


 The particle doesn't have a wave packet around it


The particle <u>is</u> the wave packet!!!

Diffraction



Diffraction

Diffraction and Uncertainty Principle

Wiffraction - classically half midth of central maximum sindhw = 2/0 w/ D = apenture diameter Page sin = Py (ymnx/p Heisenberg Dy Bry 2 to = 1/4TT - Diffraction satisfies uncertainty principle

- Smaller Dy bigger DQ = smaller Dy > bigger Dy

Delta, Standard Deviation, RMS

- Standard deviation $\sigma_A = \sqrt{(\langle A^2 \rangle \langle A \rangle^2)}$
- Define $\Delta p = \sigma_p$
- Special Case: = o

 - Δp gives a measure of rms momentum

Concept Check

The size of a Hydrogen atom is approximately 10^{-10} m. What is a good approximation for the rms momentum of the electron in the atom? Recall h= 6.6×10^{-34} .

A.
$$p_{rms} = 10^{-44} \text{ kg m/s}$$

B.
$$p_{rms} = 10^{-24} \text{ kg m/s}$$

c.
$$p_{rms} = 10^{-43} \text{ kg m/s}$$

D.
$$p_{rms} = 10^{-23} \text{ kg m/s}$$

Concept Check

The size of a Hydrogen atom is approximately 10⁻¹⁰ m. What is a good approximation for the rms momentum of the electron in the atom? Recall h= 6.6 x 10⁻³⁴.

A.
$$p_{rms} = 10^{-44} \text{ kg m/s}$$

B.
$$p_{rms} = 10^{-24} \text{ kg m/s}$$

C.
$$p_{rms} = 10^{-43} \text{ kg m/s}$$

D.
$$p_{rms} = 10^{-23} \text{ kg m/s}$$

Hydrogen atom) $\Delta \rho \Delta \times N = 10^{-34} \text{ Ts}$ $\rho rms = \Delta \rho N = 10^{-24} \text{ Kgm/s}$ classically KE = /2mv²
= e²/2m (KE) = proms/2 m 10 -48 -30 $= 0.5 \times 10^{-18} J$ $\angle KE \rangle_{eV} = 0.5 \times 10^{-18} / e$ = 0.5 \times 1.6 \times 1.6 \times 1.0^{-19} 3.1 eV - Actual average kinetic energy of electron in 14 atom = 13.6 eV pretty close !!