

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Last Few Weeks

- Light sometimes behaves like a wave, sometimes like a particle
- Particles also sometimes behave like waves
- $p=h / \lambda$
- $\mathrm{E}^{2}=(\mathrm{pc})^{2}+\left(\mathrm{mc}^{2}\right)^{2}$
- $E_{m=0}=h c / \lambda=h v$

How do we think about waves?

Standing
Waves

Confined

Not Moving

How do we think about waves?

Wave Packet

Fourier Analysis

- Any wave form can be built up from a sum of sinusoidal waves of various wavelengths

Making Waves

- https://phet.colorado.edu/en/simulation/ fourier

Constructing a Wave Packet

$$
\Psi(x, t)=\sum_{n} A_{n} \exp \left[i\left(k_{n} x-\omega_{n} t\right)\right]
$$

Plane Waves Vs. Wave Packets

Concept Check

For which type of wave are the position (x) and momentum (p) most well-defined?
A) x most well-defined for plane wave, p most well-defined for wave packet.
B) p most well-defined for plane wave, x most well-defined for wave packet.
C) p most well-defined for plane wave, x equally well-defined for both.
D) x most well-defined for wave packet, p equally well-defined for both.
E) p and x are equally well-defined for both.

Concept Check

For which type of wave are the position (x) and momentum (p) most well-defined?
A) x most well-defined for plane wave, p most well-defined for wave packet.
B) p most well-defined for plane wave, x most well-defined for wave packet.
C) p most well-defined tor plane wave, x equally well-defined tor both.
D) x most well-defined for wave packet, p equally well-defined for both.
E) p and x are equally well-defined for both.

Classical Uncertainty Relations

Uncertainty Principle

$$
\begin{aligned}
& \Delta x \Delta \lambda \sim \varepsilon \lambda^{2} \\
& \lambda=h / \rho \Rightarrow d \lambda / d \rho=-h / \rho^{2} \\
& \Rightarrow d \lambda=-h / \rho^{2} d \rho \\
& o r|d \lambda|=h / \rho^{2}|d \rho| \\
& \begin{aligned}
& \Delta x \Delta \lambda=\Delta x \cdot h / \rho^{2} \Delta \rho \\
& \sim \varepsilon \lambda^{2} \\
&=\varepsilon h^{2} / \rho^{2} \\
& \Rightarrow \Delta x \Delta \rho \sim \varepsilon h
\end{aligned}
\end{aligned}
$$

Exact formula

$$
\begin{aligned}
& \Delta \times \Delta \rho \geq h / 4 \pi \\
& \text { define } \hbar=h / 2 \pi \\
& \Delta \times \Delta \rho \geq \hbar / 2
\end{aligned}
$$

Best case
Reasonable approximation $\Delta x \Delta \rho \sim \hbar$

Classical Uncertainty Relations

$$
\begin{aligned}
& \Delta+\Delta T \sim \varepsilon T^{2} \\
& \nu=1 / T \\
& E=h \nu=h / T \\
& \Delta E=h / T^{2} \Delta T \\
& \Delta t \Delta T=\Delta E \Delta T \cdot T^{2} / h \\
& \sim \varepsilon T^{2} \\
& \Delta E \Delta t \sim \varepsilon h \\
& \text { Exact } \Delta E \Delta t \geq \hbar / 2 \\
& \text { eften } \Delta E \Delta t \sim \hbar
\end{aligned}
$$

Heisenberg Uncertainty Principle(s)

$$
\begin{aligned}
& \Delta p \Delta x \geq \frac{1}{2} \hbar \\
& \Delta E \Delta t \geq \frac{1}{2} \hbar
\end{aligned}
$$

Ehhh... not that one...

At Home With the Heisenbergs

Concept Check

- My car has a mass of $\sim 1000 \mathrm{~kg}$. If I know its position to $1 \mathrm{~nm}\left(10^{-9} \mathrm{~m}\right)$ accuracy, what is my uncertainty as to its speed?
A. $\sim 0.1 \mathrm{~m} / \mathrm{s}$
B. $\sim 10^{-12} \mathrm{~m} / \mathrm{s}$
C. $\sim 10^{-22} \mathrm{~m} / \mathrm{s}$
D. $\sim 10^{-28} \mathrm{~m} / \mathrm{s}$

Concept Check

- My car has a mass of $\sim 1000 \mathrm{~kg}$. If I know its position to $1 \mathrm{~nm}\left(10^{-9} \mathrm{~m}\right)$ accuracy, what is my uncertainty as to its speed?

$$
\begin{aligned}
\text { A. } & \sim 0.1 \mathrm{~m} / \mathrm{s} \\
\text { B. } & \sim 10^{-12} \mathrm{~m} / \mathrm{s} \\
\text { C. } & \sim 10^{-22} \mathrm{~m} / \mathrm{s} \\
\hline \text { D. } & \sim 10^{-28} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

My Car

$$
\begin{aligned}
& m \sim 1000 \mathrm{~kg} \\
& \rho \sim 1000-\mathrm{v} \\
& \Delta v=\Delta \rho / 1000 \\
& \Delta \rho \sim \hbar / \Delta x \\
& \Delta V \sim \hbar /(1000 \Delta x) \\
& \sim 10^{-34} /\left(10^{3}-10^{-9}\right) \\
& \sim 10^{-28} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

