

Modern Physics (Phys. IV): 2704

Professor Jasper Halekas Van Allen 70 MWF 12:30-1:20 Lecture

Last Few Weeks

- Light sometimes behaves like a wave, sometimes like a particle
- Particles also sometimes behave like waves

- $E^2 = (pc)^2 + (mc^2)^2$
- $E_{m=o} = hc/\lambda = hv$

How do we think about waves?

How do we think about waves?

Wave Packet

Fourier Analysis

Any wave form can be built up from a sum of sinusoidal waves of various wavelengths

Making Waves

https://phet.colorado.edu/en/simulation/

fourier

Constructing a Wave Packet

$$\Psi(x,t) = \sum_{n} A_{n} \exp\left[i\left(k_{n}x - \omega_{n}t\right)\right]$$

Plane Waves Vs. Wave Packets

$$\Psi(x,t) = A \exp[i(kx - \omega t)]$$

$$\Psi(x,t) = \sum_{n} A_{n} \exp\left[i\left(k_{n}x - \omega_{n}t\right)\right]$$

- For which type of wave are the position (x) and momentum (p) most well-defined?
- A) x most well-defined for plane wave, p most well-defined for wave packet.
- B) p most well-defined for plane wave, x most well-defined for wave packet.
- C) p most well-defined for plane wave, x equally well-defined for both.
- D) x most well-defined for wave packet, p equally well-defined for both.
- E) p and x are equally well-defined for both.

- For which type of wave are the position (x) and momentum (p) most well-defined?
- A) x most well-defined for plane wave, p most well-defined for wave packet.
- B) p most well-defined for plane wave, x most well-defined for wave packet.
- C) p most well-defined for plane wave, x equally well-defined for both.
- D) x most well-defined for wave packet, p equally well-defined for both.
- E) p and x are equally well-defined for both.

Classical Uncertainty Relations

Uncertainty Principle DX DA ~ EZZ $\lambda = \frac{h}{\rho} \Rightarrow \frac{d}{d\rho} = -\frac{h}{\rho^2}$ => d X = - hp2 dP or IdXI = Mpildpl $\Delta \times \Delta \lambda = \Delta \times \frac{h}{e^{2}} \Delta \rho$ $= \varepsilon \frac{h^{2}}{e^{2}}$ => OX Dp ~ Eh Exact formula Ox Bp 2 4/4TT define $K = \frac{h}{2\pi}$ Dx Op 2 5/2) Best Case Reasonable appreximation DXSp~t

Classical Uncertainty Relations

DF AT NET $v = \sqrt{T}$ ミ=hレ=h/F $\Delta E = \frac{h}{T^2} \Delta T$ $\Delta + \Delta T = \Delta E \Delta T - T^2 G$ $- E T^2$ SESt ~ Eh Exact DEDT 2 1/2 often DE Dt n h

Heisenberg Uncertainty Principle(s)

 $\Delta p \,\Delta x \geq \frac{1}{2} \hbar$

 $\Delta E \Delta t \geq \frac{1}{2} \hbar$

Ehhh... not that one...

At Home With the Heisenbergs

Concept Check

- My car has a mass of ~1000 kg. If I know its position to 1 nm (10⁻⁹ m) accuracy, what is my uncertainty as to its speed?
- A. ~0.1 m/s
- B. ~10⁻¹² m/s
- C. ~10⁻²² m/s
- D. ~10⁻²⁸ m/s

Concept Check

My car has a mass of ~1000 kg. If I know its position to 1 nm (10⁻⁹ m) accuracy, what is my uncertainty as to its speed?

My Car m ~ 1000 kg p ~ 1000 - V BV = Dp/1000 Sp ~ h Ox DV~~ 5/(000 5X) $\sim 10^{-34}$ $(0^{-3} \cdot 10^{-9})$ ~ 10 - 2 b m/s