

Professor Jasper Halekas
Van Allen 70
MWF 12:30-1:20 Lecture

Diffraction

Maxima for $\delta=d \sin \theta=n \lambda \quad$ Bigger $\lambda \Rightarrow>$ fringes farther apart

X-Ray Diffraction

(a)

(a)represents actual measurement
(b)represents theoretical prediction for a double-helix

De Broglie

De Broglie Wavelength

$p=h / \lambda$ for a massless photon

- By analogy, De Broglie proposed $\lambda=h / p$ for particles with mass

Concept Check

- Suppose an electron and a baseball are moving at the same speed. How does the deBroglie wavelength of the baseball compare to that of the electron?
A. $\lambda_{\text {baseball }}=\lambda_{e}$
B. $\lambda_{\text {baseball }}=10^{30} \lambda_{e}$
C. $\lambda_{\text {baseball }}=10^{10} \lambda_{\mathrm{e}}$
D. $\lambda_{\text {baseball }}=10^{-10} \lambda_{\mathrm{e}}$
E. $\lambda_{\text {baseball }}=10^{-30} \lambda_{\mathrm{e}}$

Concept Check

- Suppose an electron and a baseball are moving at the same speed. How does the deBroglie wavelength of the baseball compare to that of the electron?

$$
\begin{array}{ll}
\text { A. } \lambda_{\text {baseball }}=\lambda_{\mathrm{e}} \\
\text { B. } \lambda_{\text {baseball }}=10^{30} \lambda_{\mathrm{e}} \\
\text { C. } \lambda_{\text {baseball }}=10^{10} \lambda_{\mathrm{e}} \\
\text { D. } \lambda_{\text {baseball }}=10^{-10} \lambda_{\mathrm{e}} \\
\text { E. } \lambda_{\text {baseball }}=10^{-30} \lambda_{\mathrm{e}}
\end{array}
$$

Concept Check

- If you increase the energy of the electrons, how should the diffraction fringes change?
A. Move farther apart
B. Move closer together
C. Stay at the same spacing
D. Turn pink and dance the Macarena

Concept Check

- If you increase the energy of the electrons, how should the diffraction fringes change?
A. Move farther apart
B. Move closer together
C. Stay at the same spacing
D. Turn pink and dance the Macarena

Electron Diffraction as a Probe

Electron diffraction pattern of an aluminummanganese alloy

Miniature Double Slit

- Images of a nanometer scale double-slit system created using gold foil and a focused ion beam (2008).
- Slits are 83 nm wide and spaced 420 nm apart

Electron Double-Slit Observations

Neutron Double Slit Experiment

Double Slit: Particle Interpretation?

"...each photon interferes only with itself. Interference between different photons never occurs."
P. A. M. Dirac, The Principles of Quantum Mechanics (1947).

Experimental Setup

- Calcium atoms are excited by a two-
 photon absorption process

$$
\left(E_{K}=3.05 \mathrm{eV}\right)+\left(E_{D}=2.13 \mathrm{eV}\right)
$$

- The excited state first decays by single photon emission ($E_{1}=2.25 \mathrm{eV}$).
- The lifetime of the intermediate state is $\tau \sim 5 \mathrm{~ns}$.
- High probability the second photon $\left(E_{2}=2.93 \mathrm{eV}\right)$ is emitted within $t=2 \tau$

Experimental Setup

source

- M_{A} and M_{B} are mirrors.
- BS_{1} is a beam splitter.
- PMi, PMA \& PMB are all photomultipliers.
- $\mathrm{N}_{1}, \mathrm{~N}_{\mathrm{A}^{\prime}} \mathrm{N}_{\mathrm{B}} \& \mathrm{~N}_{\mathrm{C}}$ are counters that record photon detections.

Experimental Setup

v_{1} and v_{2} are emitted back-to-back.

- Detection of first photon $\left(v_{1}\right)$ is counted by N_{1}.
- A signal is sent to tell the counters $\left(\mathrm{N}_{\mathrm{A}}, \mathrm{N}_{\mathrm{B}} \& \mathrm{~N}_{\mathrm{C}}\right)$ to expect a second photon $\left(v_{2}\right)$ within a time $w=2 \tau$.

Concept Check

If v_{2} is detected by PMA, then the photon must have been...
A) ...reflected at BS_{1}
B) ...transmitted at BS1
C) ...either reflected or transmitted at BS1
D) Not enough information.

Concept Check

- If the second photon $\left(v_{2}\right)$ is detected by PMA, then the photon must have traveled along Path $A\left(v i a ~ M_{A}\right)$, so . it was reflected at BSi.

Other Path

- If the second photon $\left(v_{2}\right)$ is detected by PMB , then the photon must have traveled along Path $B\left(\right.$ via $\left.M_{B}\right)$.

Both Paths

- If both $\mathrm{PMA} \& \mathrm{PMB}$ are triggered during $\mathrm{w}=2 \tau$, then the coincidence counter $\left(N_{C}\right)$ is triggered.

Correlation Measure

- Need some kind of measure of how often PMA \& PMB are being triggered at the same time.
- Let $\quad \alpha \equiv \frac{P_{C}}{P_{A} P_{B}}$
- P_{A} is the probability for N_{A} to be triggered.
- P_{B} is the probability for N_{B} to be triggered.
- P_{C} is the probability for the coincidence counter $\left(\mathrm{N}_{\mathrm{C}}\right)$ to be triggered (both N_{A} and N_{B} during $t=2 \tau$).

Interpretation

- If N_{A} and N_{B} are being triggered randomly and independently, then $\alpha=1$.
$P_{C}=P_{A} \times P_{B}$ which is consistent with:

$$
\alpha \equiv \frac{P_{C}}{P_{A} P_{B}}
$$

- Many photons present at once
- EM waves triggering $N_{A} \& N_{B}$ at random.
- If photons act like single particles, then $\alpha \sim 0$.
$\mathrm{P}_{\mathrm{C}}=0$ when photons are always detected by PMA or by PMB, but not both simultaneously.
- If photons act like waves, then $\alpha \geq 1$.
$P_{C}>P_{A} \times P_{B}$ means PMA and PMB are firing together more often than by themselves ("clustered").

Experimental Results

Photons take either Path A or Path B, but not both!!

Event Rate

Add an Extra Feature

- Use same single-photon source, but now insert a second beam splitter. (BS2)
- Run experiment as before...

Concept Check

If the photon is detected in PMA, then it must have been...
A) ...reflected at BS1.
B) ...transmitted at BS1.
C) ...either reflected or transmitted at BS1
D) Not enough information.

New Setup

- Whether the photon is detected in PMA or PMB, we have no information about which path (A or B) any photon took.
-What do we observe when we compare data from PMA \& PMB?

Quantum Interference

- Slowly change one of the path lengths (Move M_{B}, for example), and we observe interference!
- For some path length differences, all the photons are detected by PMA and none in PMB
- For some path length differences, there is an equal probability for either detector to be triggered.
- Each photon is somehow "aware" of both paths!

Wrap Up

- Photons in Experiment One took only Path A or Path B. (which-path information - a particle encounters BS1 and takes either one path or the other)
- Photons in Experiment Two take both Path A and Path B. (no path information - a wave encounters BS1 and splits equally to take both paths)

Experiment One says photons behave
like particles at BS1.
Experiment Two says photons behave
like waves at BS 1 .

Quantum Weirdness

How can the photon "know" whether we are conducting Experiment One or Experiment Two when it encounters BS1?

Perhaps each photon "senses" the entire experimental apparatus and always behaves accordingly.

Can we "trick" a photon into acting like a particle at BS1 when it should act like a wave, or the other way around?

Suppose we let the photon enter the apparatus when only one path is available, but then open up a second path at the last moment.

Delayed Choice Experiment

Impossible to insert/remove a path at the necessary speed, but the above setup is equivalent to what we just described.

Delayed Choice Experiment

When voltage applied to PC-A, it deflects the photon to PMA. We can turn this voltage on and off very quickly (and randomly).

Delayed Choice Experiment

Delayed Choice Experiment

If the photon is reflected at BS_{1} with voltage applied to $\mathrm{PC}-\mathrm{A}$, then the photon is always detected in PMA.

Delayed Choice Experiment

If the photon is transmitted at BS1 with voltage applied to PC-A, then the photon is detected in PM_{1} or PM_{2} with equal probability (no interference).

Delayed Choice Experiment

When NO voltage applied to PC-A, both Paths A \& B are possible. We'll fix mirrors so photons are always detected in PM1 (Interference).

Delayed Choice Wrap Up

No voltage applied to PC-A:
Both paths are possible and photon is detected in PM_{1} only.
TWO PATHS = INTERFERENCE

Voltage applied to PC-A:
If photon detected in PMA $\longleftrightarrow \rightarrow$ Photon took Path A
If photon detected in PM 1 or $\mathrm{PM} 2 \longleftrightarrow$ Photon took Path B ONE PATH = NO INTERFERENCE.

Delayed Choice Experimental Data

- Dots represent apparatus operating in "normal" mode

- Crosses represent apparatus operating in "delayed-choice" mode
- photon enters apparatus with only one path open.
- photon should choose one path or the other at BS1
- paths are unblocked after delay, interference is still observed.

Interpretation?

"The result of [the detection] must be either the whole photon or nothing at all. Thus the photon must change suddenly from being partly in one beam and partly in the other to being entirely in one of the beams."
P. A. M. Dirac, The Principles of Quantum Mechanics (1947).

Great Gadzooks

Experiment One says photons behave like particles.

Experiment Two says photons behave like waves.

Experiment Three says photons do not behave like particle and wave at the same time.

Complementarity

- Sometimes photons behave like waves, and sometimes like particles, but never both at the same time.
- According to Bohr, particle or wave are just classical concepts, used to describe the different behaviors of quanta under different circumstances.
- Neither concept by itself can completely describe the behavior of quantum systems.

Contraria
sunt
Complementa
Latin for:
opposites
are
complements

Wave-Particle Duality

- Light sometimes has particle-like behavior
- Particles sometimes have wavelike behavior

