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Goal:

Explore phenomenological (front-form) relativistic models of hadrons based on
QCD degrees of freedom. Construct relativistic light-front wave functions of
hadrons including sea-quark degrees of freedom.

Elements:

• QCD degrees of freedom (locally and globally SU(3) invariant).

• All scales set by quark masses, 1 coupling constant, CSB scale (π mass).

• Simple enough to treat sea quark degrees of freedom. Charge carriers visible
to EM probes.

• Consistent treatment of scattering, decays, spectra and electromagnetic
properties?

• Dual QCD - hadronic representations.

• Boosts kinematic.



Inspiration:

• Structure of the model (degrees of freedom/interactions):

K. G. Wilson, Phys. Rev. D10, 2445 (1974).

J. B. Kogut and L. Susskind, Phys. Rev. D11, 395 (1975).

E. Seiler, Lecture Notes in Physics, 159, 1 (1982).

•Treatment of glue DOF:

O. W. Greenberg and J. Hietarinta, Physics Letters B 86, 309 (1979).

• Scattering in confined systems:

R. F. Dashen, J. B. Healy, and I. J. Muzinich, Ann. of Phys. 102, 1
(1976).



Model Hilbert space - motivation - degrees of freedom:

• Kogut and Susskind: (Hamiltonian lattice) degrees of freedom are mutually
non-interacting global and local SU(3) color invariant connected networks of
quarks, anti-quarks and links:

H = Hstatic + Hdynamic

• The static energy of a connected network is equal to the sum of the quark
masses and the number of links times the energy per link.

• K & S Hilbert space: Basis = locally and globally gauge invariant eigenstates
of Hstatic.

• In the absence of the remaining interactions the static degrees of freedom are
confined. Local gauge invariance means separating quarks requires more links.



Model Hilbert space

• Model connected local and global color singlets by confined systems of quarks
and anti-quarks. In general there will be towers of excited interactions.

• Greenberg and Hietarinta: Identical quarks in different connected networks
behave like distinguishable particles due to the glue (link) degree of freedom.

| ↓↑〉 |�〉 independent

→ Quarks and anti-quarks confined in different connected singlets are treated
as distinguishable. This eliminates Van der Waals forces.



Dynamics

• Covariant derivative and color magnetic interactions allow different connected
singlets to move and interact.

• Too many gauge invariant degrees of freedom and too many possible
interactions between them to formulate a sensible model of the dynamics.

• Dynamical assumption to test: The physics is dominated by string breaking
and the “ground” confining interaction.

• No fundamental QCD justification, except that meson exchange seems to be
important in phenomenological hadronic reactions and string breaking is used
successfully to model hadronic reactions in PYTHIA.

Question: Does this limited set of model degrees of freedom and interactions
result in a consistent picture of spectral properties, lifetimes, cross sections and
electromagnetic observables using a limited set of parameters?



Model - meson valence sector - confined singlets:

Mass operator for a quark-anti-quark singlet - scales set by model parameters:
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√
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π mass and π − ρ splitting (sets the CSB scale)

Vcsb := (a + bsq · sq̄)δl0.

V0 and the quark masses are essentially the same parameter. This is an
arbitrary splitting of a single constant. There are no quark mass eigenstates -
there is no way to separate what we call a quark mass from what we call a
confining interaction.

Assumption: Quarks and anti-quarks transform like discrete mass mq spin 1
2

irreducible representations of the Poincaré group (no fundamental justification).



Bare mesons:

Approximate linear confinement
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Approximate Regge behavior

l ≈ 1

4λ
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The oscillator parameter is chosen to fit the Regge slope of the ρ− a mesons.

Table: Regge trajectories, J = L+ 1,S = 1 mq =
mρ

2 = .385, λ = .282

meson L exp mass exp (mass)2 J calc mass calc (mass)2

ρ 0 .770 .593 1 .770 .593
a2 1 1.320 1.742 2 1.311 1.719
ρ3 2 1.690 2.856 3 1.687 2.846
a4 3 2.040 4.162 4 1.994 3.976
ρ5 4 2.350 5.522 5 2.259 5.103
a6 5 2.450 6.000 6 2.497 6.335

〈r 2
π〉1/2 = .64 fm
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Figure: mass vs 〈r 2〉1/2



0 1 2 3 4 5 6

L

1

2

3

4

5

6
(M

as
s)

2
(G

eV
)

2

experiment
model

Figure: Regge trajectory for ρ and a mesons



Relativity (unitary representation of the Poincaré group)

CM momentum relativistic:

〈k2
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√
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3

2
).

√
3λ

4
≈ .46(GeV )

Bare hadron wave functions, p̃ = (p+, p⊥), µ = sf · ẑ:

〈P̃, j , µ̃, k, l , s︸ ︷︷ ︸
Hqq̄

| P̃′, j ′, µ̃′, n′, l ′, s ′︸ ︷︷ ︸
Hnjls

〉 = δ(P̃− P̃′)δµ̃µ̃′δj′jδs′sδl′ l R̃n′ l′(k).

Dual representation of the hadronic Hilbert space:(k ↔ n)

Hqq̄ ∼ HH := ⊕Hnjls . Uqq̄(Λ, a) =
∑
njls

Unjls(Λ, a)

Unitary representation of the Poincaré group on Hnjls :
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∑
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√
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D j
ν̃µ̃[B−1
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Summary - bare mesons:

Wave functions are known analytically (harmonic oscillator).

Exact unitary light-front representation of the Poincaré group - including
transverse rotations - composite systems have a well-defined spin.

Approximate linear confinement.

Approximate linear Regge trajectory - slope fixes λ.

Only flavor dependence is quark masses at this point.

Gauge invariant basis.



String breaking - model assumptions

A quark-anti-quark pair is produced with equal probability at any point on the
line between the original quark-anti-quark pair.

Delta functions are replaced by delta-function normalized Gaussians with the
width of oscillator ground state (replaces line by a “flux tube” with width
determined by oscillator parameter λ).

Spin independent vertex:

〈r1, r2, r12|v2:1|r〉 := g
√
λδ(r − 2r12)
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2
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where the Gaussian approximate delta function is
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λ
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)3/2e
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4

∫
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2
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The dimensionless coupling constant g must be a constant of order unity.
Fixed by ρ lifetime.

Spin dependent part (q,q̄ have opposite parity):

Y1m (̂r12)〈s3, µ3, s4, µ4|1, µs〉〈1,ml , 1, µs |0, 0〉.



Figure: String breaking vertex



Hadronic representation of vertex: (spin-independent part)

The 9 dimensional integral over the initial and final bare meson states can be
computed analytically for any three bare meson states

The string-breaking vertex fixes all hadronic production vertices:
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Momentum space requires a one-dimensional Fourier Bessel transform of r12.

The full vertex is defined by including the spin dependent part and embedding
it in the full Hilbert space so it commutes with and is independent of P+, P⊥
and sf .



Tweaks:

The structure of the model is constrained because the scales are fixed by the
same number of parameters as QCD.

Unable to get a consistent picture of scattering, lifetimes, bare meson spectra
due to these constraints.

This was fixed by applying a unitary scale transformation to the vertex that
reduced the width of the flux tube by a factor of 2.

〈n1, l1,m1, n2, l2,m2, r12|v2:1|n, l ,m〉 → (2)3/2〈n1, l1,m1n2, l2,m2, 2r12|v2:1|n, l ,m〉

This is still consistent with the scale set by the confining interaction.

The up and down quark masses were taken to be half of the ρ mass. The only
calculations sensitive to the quark masses were the form factor calculations.
Pion form factor calculations ignoring sea quarks were closer to data using
mq : .385 GeV→ .2 GeV. These calculations did not include sea quark
contributions.



Sea quarks - truncation to 1+2 bare meson subspace:

Model Hilbert space

H = HH ⊕ (HH ⊗HH) Hadronic representation.

H = Hqq̄ ⊕ (Hqq̄ ⊗Hqq̄) Dual QCD DOF representation.

Bare meson unitary representation of the Poincaré group

U0(Λ, a) =

(
Uqq̄(Λ, a) 0

0 Uqq̄(Λ, a)⊗ Uqq̄(Λ, a)

)
.

String breaking dynamics

M = M0 + V =

(
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0
√
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√
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c2 + q2

)
︸ ︷︷ ︸

M0

+

(
0 v1:2

v2:1 0

)
︸ ︷︷ ︸

V

,

vi :j is the string breaking vertex.



Relativistic dynamics including string breaking:

The string breaking vertex is constructed to commute with light-front
kinematic subgroup and sf 0 (not J0!).

Diagonalize M in the basis of simultaneous eigenstates of M0,P
+
0 ,P0⊥, s

2
0 , s0fz

and invariant degeneracy quantum numbers, d .

UI (Λ, a) is defined so these states transform irreducibly

UI (Λ, a)|(M, s, d)P̃, µ̃〉 :=

e ia·ΛPM
∑
ν̃

|(M, s, d)Λ̃ΛΛ,PM , ν̃〉
√

(ΛP)+

P+
Ds
ν̃µ̃[B−1

f (ΛPM)ΛBf (PM)]

This is different than U0(Λ, a). It requires diagonalizing M. The operators
M,P+

0 ,P0⊥, s
2
0 , s0fz are commuting self-adjoint operators. UI (Λ, a) is defined so

simultaneous eigenstates of these operators transform irreducibly.

Hadronic eigenstates can be expressed in terms of current quark spins and
momenta using Poincaré Clebsch-Gordon coefficients in a light-front basis.



Mass eigenvalue problem - sea quarks:

|Ψ〉 =

(
|Ψ1〉
|Ψ2〉

)
Coupled eigenvalue equations

(λ−Mc)|Ψ1〉 = v1:2|Ψ2〉

(λ−
√

M2
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√
M2

c2 + q2)|Ψ2〉 = v2:1|Ψ1〉
These decouple
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√
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√
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√
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√
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Normalization:

1 = 〈Ψ1|Ψ1〉+ 〈Ψ2|Ψ2〉
〈Ψ2|Ψ2〉 = sea quark probability

Equation still has an infinite number of channels - it requires a truncation.

Mass eigenvalues are real zeroes of F (λ) between 0 and the two bare meson
threshold:

F (λ) = det

(
I − (λ−Mc)−1v1:2(λ−

√
M2

c1 + q2 +
√

M2
c2 + q2))−1v2:1

)
.



Results:

Model calculation keeping 2 qq̄ channels with n ≤ 4:

Table: Parameters

λ .282 (GeV)2

g 5.44
mq = mq̄ .385 GeV
mπ0 .160 GeV
mρ0 .882 GeV

Table: Results

bare pion mass .1600 GeV
mπ - 2nd order perturbation theory (n ≤ 4) .1327 GeV
mπ exact (n ≤ 4) .1329 GeV
valence quark probability 82%
sea quark probability 18%



Scattering of bare mesons:(s-channel case)

Wave operators exist with infinite number of bare mesons. Time-dependent
methods result in coupled equations

T 22(e + i0+) = 0 + v2:1(e −M1 + i0+)−1T 12(e + i0+)

T 12(e + i0+) = v1:2 + v1:2(e −M2 + i0+)−1T 22(e + i0+).

These equations can expressed in terms of the solution of

T 12(e + i0+) = v1:2 + v1:2(e −M2 + i0+)−1v2:1(e −M1 + i0+)−1T 12(e + i0+).

This equation has an infinite number of poles in the continuum. These are
spurious and can be eliminated by defining

Γ12(e + i0+) := (e −M1 + i0+)−1T 12(e + i0+)

Γ12(e + i0+) = (e −M1 − v1:2(e −M2 + i0+)−1v2:1)−1v1:2

T 22(e + iε+) = v2:1
1

e −M1 − v1:2(e −M2 + i0+)−1v2:1
v1:2

This has no spurious singularities in the continuum.

Note that there are no long-range Van der Waals forces because the quarks in
different singlets are treated as distinguishable.

Data: Phys. Rev. D7,1279(1973), Phys. Rev. D12,681(1975).
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Figure: π − π scattering cross section (s-channel)



Unstable particles

When
Mn1,n2,0 < Mn0

Mn1,n2,q120 = Mn0 has solutions for real q2
120 that depend on n1 and n2:

q2
120 =

M4
n1

+ M4
n2

+ M4
n0
− 2M2

n1
M2

n2
− 2M2

n1
M2

n0
− 2M2

n2
M2

n0

4M2
n0

The decay width is

Γ =
∑
n1n2

2π
q120ωn1(q120)ωn2(q120)

ωn1(q120) + ωn2(q120)
|〈n1, n2, q120|v21|n0〉|2

The sum is over the open decay channels.

Table: Results

bare ρ mass .882 GeV
position ρ resonance (fixes g) .770 GeV
shift -.122 GeV
calculated width of ρ resonance .134 GeV
experimental width of ρ resonance .150 GeV



Pion Form factor - including sea quark contributions

Fπ(Q2) = 〈π, p̃′|I+(0)|π, p̃〉

Fπ(Q2) =

1〈π, p̃′|Iµ(0)|π, p̃〉1+

1〈π, p̃′|Iµ(0)| 1

mπ −M2
v2:1

1

mπ −M1
|π, p̃〉1+

1〈π, p̃|
1

mπ −M1
v12

1

mπ −M2
|Iµ(0)|π, p̃〉1+

1〈π, p̃|
1

mπ −M1
v12

1

mπ −M2
|Iµ(0)| 1

mπ −M2
v2:1

1

mπ −M1
|π, p̃′〉1

Calculations below do not include sea quark contribution (mπ = eigenvalue).

FF data from: Nuclear Physics B 277, 168 (1986), Phys. Rev. Lett. 86, 1713
(2001), Phys. Rev. D 17, 1693 (1978)
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Conclusions/Outlook:

• Simple models with the same # of parameters as QCD and dynamics given
by string breaking gives a qualitatively consistent picture of spectral properties,
lifetimes, cross sections and electromagnetic properties.

• Model gives analytic expressions for fully relativistic wave functions, including
explicit sea quark degrees of freedom, for any mesons.

• One string breaking vertex gives all 1↔ 2 meson vertices.

• Boosts kinematic; focus is on charge carriers that are sensitive to E&M
probes.

• Method can be directly applied to baryons and exotics assuming that they
can be represented using quark-diquark singlet degrees of freedom.



To do:

• Include one-body currents in the sea contribution to the pion form-factor
calculations.

• Calculate relativistic proton wave function including sea quark contributions
using quark-diquark-singlet degrees of freedom.

• Nucleon-form factors, structure functions including sea quark contributions.

• Mass spectrum and wave functions for exotics.


