Relativistic light-front models of hadrons based on QCD degrees of freedom
 W. N. Polyzou
 The University of Iowa

Siraj Kuthini Kunhammed - Ph.D. 12/20
WMO Arts \& Science College

This Work: Phys. Rev. C 102,065209(2020), arxiv:abs/2007.14892

Research supported by the U.S. Department of Energy, Office of Science, Grant \#DE-SC0016457

Outline

- Motivation - background
- Degrees of freedom
- Model assumptions
- Relativistic invariance
- Sea quarks
- Scattering
- Decays
- Electromagnetic observables
- To do

Goal:

Explore phenomenological (front-form) relativistic models of hadrons based on QCD degrees of freedom. Construct relativistic light-front wave functions of hadrons including sea-quark degrees of freedom.

Elements:

- QCD degrees of freedom (locally and globally SU(3) invariant).
- All scales set by quark masses, 1 coupling constant, CSB scale (π mass).
- Simple enough to treat sea quark degrees of freedom. Charge carriers visible to EM probes.
- Consistent treatment of scattering, decays, spectra and electromagnetic properties?
- Dual QCD - hadronic representations.
- Boosts kinematic.

Inspiration:

- Structure of the model (degrees of freedom/interactions):
K. G. Wilson, Phys. Rev. D10, 2445 (1974).
J. B. Kogut and L. Susskind, Phys. Rev. D11, 395 (1975).
E. Seiler, Lecture Notes in Physics, 159, 1 (1982).
- Treatment of glue DOF:
O. W. Greenberg and J. Hietarinta, Physics Letters B 86, 309 (1979).
- Scattering in confined systems:
R. F. Dashen, J. B. Healy, and I. J. Muzinich, Ann. of Phys. 102, 1 (1976).

Model Hilbert space - motivation - degrees of freedom:

- Kogut and Susskind: (Hamiltonian lattice) degrees of freedom are mutually non-interacting global and local SU(3) color invariant connected networks of quarks, anti-quarks and links:

$$
H=H_{\text {static }}+H_{\text {dynamic }}
$$

- The static energy of a connected network is equal to the sum of the quark masses and the number of links times the energy per link.
- K \& S Hilbert space: Basis = locally and globally gauge invariant eigenstates of $H_{\text {static }}$.
- In the absence of the remaining interactions the static degrees of freedom are confined. Local gauge invariance means separating quarks requires more links.

Model Hilbert space

- Model connected local and global color singlets by confined systems of quarks and anti-quarks. In general there will be towers of excited interactions.
- Greenberg and Hietarinta: Identical quarks in different connected networks behave like distinguishable particles due to the glue (link) degree of freedom.

$$
|\downarrow \uparrow\rangle \quad|\rightleftarrows\rangle \quad \text { independent }
$$

\rightarrow Quarks and anti-quarks confined in different connected singlets are treated as distinguishable. This eliminates Van der Waals forces.

Dynamics

- Covariant derivative and color magnetic interactions allow different connected singlets to move and interact.
- Too many gauge invariant degrees of freedom and too many possible interactions between them to formulate a sensible model of the dynamics.
- Dynamical assumption to test: The physics is dominated by string breaking and the "ground" confining interaction.
- No fundamental QCD justification, except that meson exchange seems to be important in phenomenological hadronic reactions and string breaking is used successfully to model hadronic reactions in PYTHIA.

Question: Does this limited set of model degrees of freedom and interactions result in a consistent picture of spectral properties, lifetimes, cross sections and electromagnetic observables using a limited set of parameters?

Model - meson valence sector - confined singlets:

Mass operator for a quark-anti-quark singlet - scales set by model parameters:

$$
\begin{gathered}
M_{c}=\sqrt{k^{2}+V_{c}+m_{q}^{2}}+\sqrt{k^{2}+V_{c}+m_{\bar{q}}^{2}} \\
V_{c}=-\frac{\lambda^{2}}{4} \nabla_{k}^{2}+V_{0} \\
M_{n I} \rightarrow \sqrt{m_{q}^{2}+\lambda\left(2 n+I+\frac{3}{2}\right)+V_{0}}+\sqrt{m_{\bar{q}}^{2}+\lambda\left(2 n+I+\frac{3}{2}\right)+V_{0}}
\end{gathered}
$$

π mass and $\pi-\rho$ splitting (sets the CSB scale)

$$
V_{c s b}:=\left(a+b \mathbf{s}_{q} \cdot \mathbf{s}_{\bar{q}}\right) \delta_{l 0}
$$

V_{0} and the quark masses are essentially the same parameter. This is an arbitrary splitting of a single constant. There are no quark mass eigenstates there is no way to separate what we call a quark mass from what we call a confining interaction.

Assumption: Quarks and anti-quarks transform like discrete mass m_{q} spin $\frac{1}{2}$ irreducible representations of the Poincaré group (no fundamental justification).

Bare mesons:

Approximate linear confinement

$$
\left\langle r_{n \mid s}^{2}\right\rangle^{1 / 2}=\sqrt{\frac{2}{\lambda}\left(2 n+I+\frac{3}{2}\right)} \quad M_{n \mid s} \approx \sqrt{2} \lambda\left\langle r_{R M S}^{2}\right\rangle^{\frac{1}{2}}
$$

Approximate Regge behavior

$$
I \approx \frac{1}{4 \lambda} M_{n / s}^{2}
$$

The oscillator parameter is chosen to fit the Regge slope of the $\rho-a$ mesons.
Table: Regge trajectories, $J=L+1, S=1 m_{q}=\frac{m_{\rho}}{2}=.385, \lambda=.282$

meson	L	exp mass	exp (mass) ${ }^{2}$	J	calc mass	calc (mass) ${ }^{2}$
ρ	0	. 770	. 593	1	. 770	. 593
a_{2}	1	1.320	1.742	2	1.311	1.719
ρ_{3}	2	1.690	2.856	3	1.687	2.846
a_{4}	3	2.040	4.162	4	1.994	3.976
ρ_{5}	4	2.350	5.522	5	2.259	5.103
a_{6}	5	2.450	6.000	6	2.497	6.335

$\left\langle r_{\pi}^{2}\right\rangle^{1 / 2}=.64 \mathrm{fm}$
mass vs r

Figure: mass vs $\left\langle r^{2}\right\rangle^{1 / 2}$

Figure: Regge trajectory for ρ and a mesons

Relativity (unitary representation of the Poincaré group)
CM momentum relativistic:

$$
\left\langle k_{n / s}^{2}\right\rangle^{1 / 2}=\sqrt{\frac{\lambda}{2}\left(2 n+I+\frac{3}{2}\right)} . \quad \sqrt{\frac{3 \lambda}{4}} \approx .46(\mathrm{GeV})
$$

Bare hadron wave functions, $\tilde{\mathbf{p}}=\left(p^{+}, \mathbf{p}_{\perp}\right), \mu=\mathbf{s}_{f} \cdot \hat{\mathbf{z}}$:

$$
\underbrace{\langle\tilde{\mathbf{P}}, j, \tilde{\mu}, k, l, s}_{\mathcal{H}_{q \bar{q}}}|\underbrace{\tilde{\mathbf{P}}^{\prime}, j^{\prime}, \tilde{\mu}^{\prime}, n^{\prime}, I^{\prime}, s^{\prime}}_{\mathcal{H}_{n j l s}}\rangle=\delta\left(\tilde{\mathbf{P}}-\tilde{\mathbf{P}}^{\prime}\right) \delta_{\tilde{\mu} \tilde{\mu}^{\prime}} \delta_{j^{\prime} j} \delta_{s^{\prime} s} \delta_{l^{\prime} \mid} \tilde{R}_{n^{\prime} \prime^{\prime}}(k) .
$$

Dual representation of the hadronic Hilbert space: $(k \leftrightarrow n)$

$$
\mathcal{H}_{q \bar{q}} \sim \mathcal{H}_{H}:=\oplus \mathcal{H}_{n j l s .} \quad U_{q \bar{q}}(\Lambda, a)=\sum_{n j l s} U_{n j l s}(\Lambda, a)
$$

Unitary representation of the Poincaré group on $\mathcal{H}_{n j / s}$:

$$
\begin{gathered}
U_{n j l s}(\Lambda, a)|\tilde{\mathbf{P}}, j, \tilde{\mu}, n, l, s\rangle= \\
e^{i a \cdot \Lambda P_{n / s}} \sum_{\tilde{\nu}}\left|\tilde{\Lambda} P_{n / s}, j, \tilde{\nu}, n, l, s\right\rangle \sqrt{\frac{\left(\Lambda P_{n / s}\right)^{+}}{P^{+}}} D_{\tilde{\nu} \tilde{\mu}}^{j}\left[B_{f}^{-1}\left(\Lambda P_{n / s}\right) \wedge B_{f}\left(P_{n / s}\right)\right]
\end{gathered}
$$

Summary - bare mesons:

Wave functions are known analytically (harmonic oscillator).

Exact unitary light-front representation of the Poincaré group - including transverse rotations - composite systems have a well-defined spin.

Approximate linear confinement.

Approximate linear Regge trajectory - slope fixes λ.

Only flavor dependence is quark masses at this point.

Gauge invariant basis.

String breaking - model assumptions

A quark-anti-quark pair is produced with equal probability at any point on the line between the original quark-anti-quark pair.

Delta functions are replaced by delta-function normalized Gaussians with the width of oscillator ground state (replaces line by a "flux tube" with width determined by oscillator parameter λ).

Spin independent vertex:

$$
\left\langle\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{12}\right| v_{2: 1}|\mathbf{r}\rangle:=g \sqrt{\lambda} \delta\left(\mathbf{r}-2 \mathbf{r}_{12}\right) \int_{0}^{1} d \eta \delta_{\sqrt{\frac{\lambda}{2}}}\left(\mathbf{r}_{1}-\eta \mathbf{r}\right) \delta_{\sqrt{\frac{\lambda}{2}}}\left(\mathbf{r}_{2}-(1-\eta) \mathbf{r}\right)
$$

where the Gaussian approximate delta function is

$$
\delta_{\sqrt{\frac{\lambda}{2}}}(\mathbf{r}):=\left(\frac{\lambda}{4 \pi}\right)^{3 / 2} e^{\frac{-\lambda r^{2}}{4}} \quad \int \delta_{\sqrt{\frac{\lambda}{2}}}(\mathbf{r}) d \mathbf{r}=1
$$

The dimensionless coupling constant g must be a constant of order unity. Fixed by ρ lifetime.

Spin dependent part (q, \bar{q} have opposite parity):

$$
Y_{1 m}\left(\hat{\mathbf{r}}_{12}\right)\left\langle s_{3}, \mu_{3}, s_{4}, \mu_{4} \mid 1, \mu_{s}\right\rangle\left\langle 1, m_{l}, 1, \mu_{s} \mid 0,0\right\rangle
$$

Hadronic representation of vertex: (spin-independent part)
The 9 dimensional integral over the initial and final bare meson states can be computed analytically for any three bare meson states

The string-breaking vertex fixes all hadronic production vertices:

$$
\begin{gathered}
\left\langle n_{1}, l_{1}, m_{1}, n_{2}, l_{2}, m_{2}, \mathbf{r}_{12}\right| v_{2: 1}|n, l, m\rangle= \\
\frac{g}{\sqrt{\lambda}} R_{n \prime}\left(2 r_{12}\right)(2 \lambda)^{3 / 2} \frac{\left(\sqrt{\frac{\lambda}{2}} r_{12}\right)^{2 n_{1}+l_{1}+2 n_{2}+l_{2}}}{\left.\left.\sqrt{2 n_{1}!\Gamma\left(n_{1}+l_{1}+\frac{3}{2}\right.}\right) \sqrt{2 n_{2}!\Gamma\left(n_{2}+l_{2}+\frac{3}{2}\right.}\right)} \times \\
e^{-\frac{\lambda}{4} r_{12}^{2} \sum_{k_{1}+k_{2}=2 r} \frac{\left(l_{1}+2 n_{1}\right)!\left(l_{2}+2 n_{2}\right)!}{k_{1}!k_{2}!\left(l_{1}+2 n_{1}-k_{1}\right)!\left(l_{2}+2 n_{2}-k_{2}\right)!}(-)^{k_{2}\left(\frac{1}{2}\right)^{l_{1}+2 n_{1}+l_{2}+2 n_{2}} \times}} \begin{array}{c}
\frac{1}{2 r+1} M\left(\frac{1}{2}+r, \frac{3}{2}+r,-\frac{\lambda r_{12}^{2}}{4}\right) Y_{l m}\left(\hat{\mathbf{r}}_{12}\right) Y_{l_{1} m_{1}}^{*}\left(\hat{\mathbf{r}}_{12}\right) Y_{l_{2} m_{2}}^{*}\left(\hat{\mathbf{r}}_{12}\right)
\end{array} .
\end{gathered}
$$

Momentum space requires a one-dimensional Fourier Bessel transform of r_{12}.
The full vertex is defined by including the spin dependent part and embedding it in the full Hilbert space so it commutes with and is independent of $P^{+}, \mathbf{P}_{\perp}$ and \mathbf{s}_{f}.

Tweaks:

The structure of the model is constrained because the scales are fixed by the same number of parameters as QCD.

Unable to get a consistent picture of scattering, lifetimes, bare meson spectra due to these constraints.

This was fixed by applying a unitary scale transformation to the vertex that reduced the width of the flux tube by a factor of 2 .
$\left\langle n_{1}, l_{1}, m_{1}, n_{2}, l_{2}, m_{2}, \mathbf{r}_{12}\right| v_{2: 1}|n, l, m\rangle \rightarrow(2)^{3 / 2}\left\langle n_{1}, l_{1}, m_{1} n_{2}, l_{2}, m_{2}, 2 r_{12}\right| v_{2: 1}|n, l, m\rangle$
This is still consistent with the scale set by the confining interaction.

The up and down quark masses were taken to be half of the ρ mass. The only calculations sensitive to the quark masses were the form factor calculations. Pion form factor calculations ignoring sea quarks were closer to data using $m_{q}: .385 \mathrm{GeV} \rightarrow .2 \mathrm{GeV}$. These calculations did not include sea quark contributions.

Sea quarks - truncation to $\mathbf{1 + 2}$ bare meson subspace:

Model Hilbert space

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}_{H} \oplus\left(\mathcal{H}_{H} \otimes \mathcal{H}_{H}\right) \quad \text { Hadronic representation. } \\
\mathcal{H}=\mathcal{H}_{q \bar{q}} \oplus\left(\mathcal{H}_{q \bar{q}} \otimes \mathcal{H}_{q \bar{q}}\right) \quad \text { Dual QCD DOF representation. }
\end{gathered}
$$

Bare meson unitary representation of the Poincaré group

$$
U_{0}(\Lambda, a)=\left(\begin{array}{cc}
U_{q \bar{q}}(\Lambda, a) & 0 \\
0 & U_{q \bar{q}}(\Lambda, a) \otimes U_{q \bar{q}}(\Lambda, a)
\end{array}\right) .
$$

String breaking dynamics

$$
M=M_{0}+V=\underbrace{\left(\begin{array}{cc}
M_{c} & 0 \\
0 & \sqrt{M_{c 1}^{2}+\mathbf{q}^{2}}+\sqrt{M_{c 2}^{2}+\mathbf{q}^{2}}
\end{array}\right)}_{M_{0}}+\underbrace{\left(\begin{array}{cc}
0 & v_{1: 2} \\
v_{2: 1} & 0
\end{array}\right)}_{V},
$$

$v_{i: j}$ is the string breaking vertex.

Relativistic dynamics including string breaking:

The string breaking vertex is constructed to commute with light-front kinematic subgroup and $\mathbf{s}_{f 0}\left(\right.$ not \mathbf{J}_{0} !).

Diagonalize M in the basis of simultaneous eigenstates of $M_{0}, P_{0}^{+}, \mathbf{P}_{0 \perp}, s_{0}^{2}, s_{0 f z}$ and invariant degeneracy quantum numbers, d.
$U_{l}(\Lambda, a)$ is defined so these states transform irreducibly

$$
\begin{gathered}
U_{l}(\Lambda, a)|(M, s, d) \tilde{\mathbf{P}}, \tilde{\mu}\rangle:= \\
e^{i \cdot \cdot \wedge P_{M}} \sum_{\tilde{\nu}}\left|(M, s, d) \tilde{\Lambda}, P_{M}, \tilde{\nu}\right\rangle \sqrt{\frac{(\Lambda P)^{+}}{P^{+}}} D_{\tilde{\nu} \tilde{\mu}}^{s}\left[B_{f}^{-1}\left(\Lambda P_{M}\right) \wedge B_{f}\left(P_{M}\right)\right]
\end{gathered}
$$

This is different than $U_{0}(\Lambda, a)$. It requires diagonalizing M. The operators $M, P_{0}^{+}, \mathbf{P}_{0 \perp}, s_{0}^{2}, s_{0 f z}$ are commuting self-adjoint operators. $U_{l}(\Lambda, a)$ is defined so simultaneous eigenstates of these operators transform irreducibly.

Hadronic eigenstates can be expressed in terms of current quark spins and momenta using Poincaré Clebsch-Gordon coefficients in a light-front basis.

Mass eigenvalue problem - sea quarks:

$$
|\Psi\rangle=\binom{\left|\Psi_{1}\right\rangle}{\left|\Psi_{2}\right\rangle}
$$

Coupled eigenvalue equations

$$
\begin{gathered}
\left(\lambda-M_{c}\right)\left|\Psi_{1}\right\rangle=v_{1: 2}\left|\Psi_{2}\right\rangle \\
\left(\lambda-\sqrt{M_{c 1}^{2}+\mathbf{q}^{2}}+\sqrt{M_{c 2}^{2}+\mathbf{q}^{2}}\right)\left|\Psi_{2}\right\rangle=v_{2: 1}\left|\Psi_{1}\right\rangle
\end{gathered}
$$

These decouple

$$
\begin{gathered}
\left.\left|\Psi_{1}\right\rangle=\left(\lambda-M_{c}\right)^{-1} v_{12}\left(\lambda-\sqrt{M_{c 1}^{2}+\mathbf{q}^{2}}+\sqrt{M_{c 2}^{2}+\mathbf{q}^{2}}\right)\right)^{-1} v_{2: 1}\left|\Psi_{1}\right\rangle \\
\left.\left|\Psi_{2}\right\rangle=\left(\lambda-\sqrt{M_{c 1}^{2}+\mathbf{q}^{2}}+\sqrt{M_{c 2}^{2}+\mathbf{q}^{2}}\right)\right)^{-1}\left|\Psi_{1}\right\rangle
\end{gathered}
$$

Normalization:

$$
1=\left\langle\Psi_{1} \mid \Psi_{1}\right\rangle+\left\langle\Psi_{2} \mid \Psi_{2}\right\rangle
$$

$\left\langle\Psi_{2} \mid \Psi_{2}\right\rangle=$ sea quark probability
Equation still has an infinite number of channels - it requires a truncation.
Mass eigenvalues are real zeroes of $F(\lambda)$ between 0 and the two bare meson threshold:

$$
\left.F(\lambda)=\operatorname{det}\left(I-\left(\lambda-M_{c}\right)^{-1} v_{1: 2}\left(\lambda-\sqrt{M_{c 1}^{2}+\mathbf{q}^{2}}+\sqrt{M_{c 2}^{2}+\mathbf{q}^{2}}\right)\right)^{-1} v_{2: 1}\right)
$$

Results:

Model calculation keeping $2 q \bar{q}$ channels with $\mathrm{n} \leq 4$:

Table: Parameters

λ	$.282(\mathrm{GeV})^{2}$
g	5.44
$m_{q}=m_{\bar{q}}$.385 GeV
$m_{\pi_{0}}$.160 GeV
$m_{\rho 0}$.882 GeV

Table: Results

bare pion mass	.1600 GeV
$m_{\pi}-2^{n d}$ order perturbation theory $(n \leq 4)$.1327 GeV
m_{π} exact $(n \leq 4)$.1329 GeV
valence quark probability	82%
sea quark probability	18%

Scattering of bare mesons:(s-channel case)

Wave operators exist with infinite number of bare mesons. Time-dependent methods result in coupled equations

$$
\begin{gathered}
T^{22}\left(e+i 0^{+}\right)=0+v_{2: 1}\left(e-M_{1}+i 0^{+}\right)^{-1} T^{12}\left(e+i 0^{+}\right) \\
T^{12}\left(e+i 0^{+}\right)=v_{1: 2}+v_{1: 2}\left(e-M_{2}+i 0^{+}\right)^{-1} T^{22}\left(e+i 0^{+}\right)
\end{gathered}
$$

These equations can expressed in terms of the solution of $T^{12}\left(e+i 0^{+}\right)=v_{1: 2}+v_{1: 2}\left(e-M_{2}+i 0^{+}\right)^{-1} v_{2: 1}\left(e-M_{1}+i 0^{+}\right)^{-1} T^{12}\left(e+i 0^{+}\right)$.

This equation has an infinite number of poles in the continuum. These are spurious and can be eliminated by defining

$$
\begin{gathered}
\Gamma_{12}\left(e+i 0^{+}\right):=\left(e-M_{1}+i 0^{+}\right)^{-1} T^{12}\left(e+i 0^{+}\right) \\
\Gamma_{12}\left(e+i 0^{+}\right)=\left(e-M_{1}-v_{1: 2}\left(e-M_{2}+i 0^{+}\right)^{-1} v_{2: 1}\right)^{-1} v_{1: 2} \\
T^{22}\left(e+i \epsilon^{+}\right)=v_{2: 1} \frac{1}{e-M_{1}-v_{1: 2}\left(e-M_{2}+i 0^{+}\right)^{-1} v_{2: 1}} v_{1: 2}
\end{gathered}
$$

This has no spurious singularities in the continuum.
Note that there are no long-range Van der Waals forces because the quarks in different singlets are treated as distinguishable.

Data: Phys. Rev. D7,1279(1973), Phys. Rev. D12,681(1975).

Figure: $\pi-\pi$ scattering cross section (s-channel)

Unstable particles

When

$$
M_{n_{1}, n_{2}, 0}<M_{n_{0}}
$$

$M_{n_{1}, n_{2}, q_{120}}=M_{n_{0}}$ has solutions for real q_{120}^{2} that depend on n_{1} and n_{2} :

$$
q_{120}^{2}=\frac{M_{n_{1}}^{4}+M_{n_{2}}^{4}+M_{n_{0}}^{4}-2 M_{n_{1}}^{2} M_{n_{2}}^{2}-2 M_{n_{1}}^{2} M_{n_{0}}^{2}-2 M_{n_{2}}^{2} M_{n_{0}}^{2}}{4 M_{n_{0}}^{2}}
$$

The decay width is

$$
\left.\Gamma=\sum_{\mathbf{n}_{1} \mathbf{n}_{2}} 2 \pi \frac{q_{120} \omega_{n 1}\left(q_{120}\right) \omega_{n 2}\left(q_{120}\right)}{\omega_{n 1}\left(q_{120}\right)+\omega_{n 2}\left(q_{120}\right)}\left|\left\langle n_{1}, n_{2}, q_{120}\right| v_{21}\right| n_{0}\right\rangle\left.\right|^{2}
$$

The sum is over the open decay channels.

Table: Results

bare ρ mass	.882 GeV
position ρ resonance (fixes g)	.770 GeV
shift	-.122 GeV
calculated width of ρ resonance	.134 GeV
experimental width of ρ resonance	.150 GeV

Pion Form factor - including sea quark contributions

$$
\begin{gathered}
F_{\pi}\left(Q^{2}\right)=\left\langle\pi, \tilde{\mathbf{p}}^{\prime}\right| I^{+}(0)|\pi, \tilde{\mathbf{p}}\rangle \\
F_{\pi}\left(Q^{2}\right)= \\
{ }_{1}\left\langle\pi, \tilde{\mathbf{p}}^{\prime}\right| I^{\mu}(0)|\pi, \tilde{\mathbf{p}}\rangle_{1}+ \\
\left.{ }_{1}\left\langle\pi, \tilde{\mathbf{p}}^{\prime}\right| I^{\mu}(0)\left|\frac{1}{m_{\pi}-M_{2}} v_{2: 1} \frac{1}{m_{\pi}-M_{1}}\right| \pi, \tilde{\mathbf{p}}\right\rangle_{1}+ \\
\left.{ }_{1}\langle\pi, \tilde{\mathbf{p}}| \frac{1}{m_{\pi}-M_{1}} v_{12} \frac{1}{m_{\pi}-M_{2}}\left|I^{\mu}(0)\right| \pi, \tilde{\mathbf{p}}\right\rangle_{1}+ \\
{ }_{1}\langle\pi, \tilde{\mathbf{p}}| \frac{1}{m_{\pi}-M_{1}} v_{12} \frac{1}{m_{\pi}-M_{2}}\left|I^{\mu}(0)\right| \frac{1}{m_{\pi}-M_{2}} v_{2: 1} \frac{1}{m_{\pi}-M_{1}}\left|\pi, \tilde{\mathbf{p}}^{\prime}\right\rangle_{1}
\end{gathered}
$$

Calculations below do not include sea quark contribution ($m_{\pi}=$ eigenvalue).
FF data from: Nuclear Physics B 277, 168 (1986), Phys. Rev. Lett. 86, 1713 (2001), Phys. Rev. D 17, 1693 (1978)

Figure: Pion Form Factor

Figure: Pion Form Factor

Conclusions/Outlook:

- Simple models with the same \# of parameters as QCD and dynamics given by string breaking gives a qualitatively consistent picture of spectral properties, lifetimes, cross sections and electromagnetic properties.
- Model gives analytic expressions for fully relativistic wave functions, including explicit sea quark degrees of freedom, for any mesons.
- One string breaking vertex gives all $1 \leftrightarrow 2$ meson vertices.
- Boosts kinematic; focus is on charge carriers that are sensitive to E\&M probes.
- Method can be directly applied to baryons and exotics assuming that they can be represented using quark-diquark singlet degrees of freedom.

To do:

- Include one-body currents in the sea contribution to the pion form-factor calculations.
- Calculate relativistic proton wave function including sea quark contributions using quark-diquark-singlet degrees of freedom.
- Nucleon-form factors, structure functions including sea quark contributions.
- Mass spectrum and wave functions for exotics.

