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Background:

e The many- body scattering problem is numerically intractable. In some
experiments there is a high probability that most of the final states will be in a
small number of dominant channels.

e To simplify the numerical problem is it desirable to have a first approximation
where all of the scattered particles are in one of the dominant scattering
channels.

e Scattering solutions have continuous energy eigenvalues. Removing open
unimportant channels involves perturbing the absolutely continuous spectrum.

e Unlike the point spectrum (bound states) the absolutely continuous spectrum
can be destroyed by arbitrarily small perturbations (Weyl Von-Neumann).



Remarks:

e Consider an integral equation of the form
X(z) = D(z) + K(z)X(2) K(z) = F(z) + A(2) z=E+ie
X(z) = (I = F(2)) 7 (D(2) + A(2)X(2)) =
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n=0
e For compact K(z) we can choose F(z) a finite dimensional matrix and A(z)
small. Then (! — F(z))™" can only change the discrete spectrum. The
continuous spectrum is in D(z) (analytic Fredholm theorem).

e The problem is how to remove contributions of the unwanted channels from
the continuous spectrum to D(z).



e Scattering channels o .
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e Notation
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e Assumptions

e Asymptotic completeness: H = Hg ® H') = Hp & HH) (=unitarity of
the scattering matrix)

e Short range interactions in H (Cook’s condition sufficient):
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e Connected products of interactions, resolvents and bound state projection
operators are compact on some Banach space (typical property of
Faddeev-Yakubovskii formulations of scattering).

e A = set of all scattering channels including the bound state channels.



e Scattering operator

S = 1030 — 2mido(Eg — Eo) T?*
e Transition operator
TP% = 0L H"Q(a) 0.
e Differential cross section
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e Cluster combinatorics

e P is the set of partitions of an N particle system into non-empty disjoint
subsystems.

e n, is the number of equivalence classes of a

e a; is the set of particles in the i equivalence class of a

e n, is the number of particles in the ith equivalence class of a

® | ~, j means that particles i and j are in the same equivalence class of a

e 0:={(1)(2)---(N)} is the unique N cluster partition (each particle in a
different class)

e 1:={(1---N)} is the unique 1 cluster partition (all particles in the same
class).
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o (Birkhoff) Lattice structure
e partial ordering on partitions a

aCbhb  imajoirp)

e Greatest lower bound and least upper bound with respect to C:
aUb: aCaUb, bCaUb,andifaCc, bC cthenaUbCc
anb: anbCa anbCbh,andifcCa, cC b thenanbCc

e Zeta function on incidence algebra (C):

1 a>b
A@"_{ 0 azb

e Mdbius function on incidence algebra (C):

Az, = { (=)™ H,-il(—o)""f(nb,- - 1) z % z



e Classification of operators (a=partition )
i Py,
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e Separates clusters of partition a

0=0,+0°
[0a, To(x1, -+, %n,)] = 0 lim {]O* Ta(x1 -+ xa,)[¢)]|. = 0.
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e O0,= T,-invariant part of O

0, = lim Ta(x1---xna)OT;(x1~~xna)
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For a C b Th(x1,- -+ ,Xn,) is a subgroup of T,(x1,--,Xns,). It follows that
05 = Tp(x1,- - ,x,,b)OaTJ(xl, S Xny)
For a Z b then O, has the following decomposition
05 =(0:)5 +(0s)° = Oarp + O3
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e Definition: [O], a-connected part of O.
[T5,[0]l.] =0 ([0la)p =0 for agb.

It follows that
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(AB), = A,B,
AB —[ABl: = > C,A:B, = (D C.A; + [Al1)B — [AB], =

a#l a#l
(> CaAa + [AL)(Bs + B”) — [AB. =
a#l
> C.AB. + > C.AB’ + [AlLB — [AB]s.
a#l a#l
I
> C.A.B’ =[AB]: — [ALB is connected!

a#l




e Spectral decomposition of H

H=Y W@ H= Y [PH]..

acA aEA aeP
P = Q) (a)d, 05 (27 (a))!
(Da®l)p = ([Pa®l].)s =0 aZb

e Chain rule for wave operators (Kato)
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foraChb
Q) (a)d, = QT (B)(Q T (2)sPa = O (a)Pa + (2 (2)Pa)”.
This means
PSOH =" Co(PS)sHy + [P HL
b1
Using this in the spectral expansion of H

H=Y"CH + [Hl = (3 (O Co(PC))oHs + [PV HIL)

a#1 Q€A b#l
[H: = > [PSHRK
acA

Note (Py )b = (Q(a)gf)'il>ad>l;(§2(a)5;))T uses only proper subsystem spectral
projections



Channel decomposition A = A, U A’

H=>" P{H+ > P

a€A, ac Al
Z (Z Co(Po )oHb + [Po H]1) + Z (Z Co(Pa )sHb + [Pa H]1)
a€A; b#l ac A’ b#l
Z Zcb (P2)sHb + Z (Z Cv(P, be + [H]z.
€A b1 €A’ b#l
= Z Zcb(Pf;))be
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Ha, = > PSIH— > [P HL

aEA a€A;

[Pf4_l)H]1 = Z [PCH)L = wi. connected
acA

PUOH = Hay + W

(z—Ha) ' = (2= PUH) ™ = (2= PLOH) T Wiz — Ha,)

e Differs from the resolvent of the exact projected Hamiltonian by a connected
operator.



(=)
W) = lim &P e E e, ) =

i(Ha,+W)t —:(Ea+/0+)t¢ |¢>

lim e
t——oo
lim e/ (Ha,+Wi)t g=i(Hat gita t o —i( (Es+iot) t¢ |¢>
t——00
Q) (2)0ald) + ——— T WIQL) (2)Pa]0)
! E, — PA, H+ie !

1
EafH.A/7WI+

W), + Wil ) (2)0al6)

connected



e Optical theorem

OLTR®s = Of(HA, + Ha, (Es — Ha, + i) ' HY,) 5.

e Discontinuity across cut
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e H4, only supports states that asymptotically look like bound clusters in the
chanels A,

o The scattering states of H4, differ from the exact scattering states when all
particle as close together.

e The interactions in H4, can in principle be constructed from proper
subsystem solutions.

e The interactions in H4, can in principle be constructed from proper
subsystem solutions.

e Effective interactions appear with all kinds of connectivities.

e The truncated theory satisfies unitarity on the chosen important channels,
Aj. Corrections can be included systematically



