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Probes of Hadronic structure

e Short-distance electromagnetic probes of strongly
interacting systems require relativistic momentum
transfers, a relativistic model of the strong interaction
dynamics and a consistent strong electromagnetic
current. (Ap ~ h/Ax, Ax=.1fm — Ap ~ 2 GeV)

e Perturbative methods are not applicable to the strong
interaction dynamics

H = Hs + Hye + / e (12(0,x) + 1%,(0,x)) A.((0,x)dx



Relativistic dynamics - one-photon-exchange approximation
U(N, a) — Us(A, a) @ Ugep (A, a)
[Py PYl=0, [J,P]= /e”kPk [JL, K] = ieP Jk,
L, K] = ieKE, (KL K] = —ie Ik
KL, Pl =i6"Hs  [KL, Hs] = iP..
Consistent current covariance and conservation
(KL, H(0)] = i6"12(0),  [KL K (0)] = il{(0)
[He, 12(0)] = Z[ <, 14(0)

Cluster propertles

He =Y Hi+> Hej+ > Hej+ -
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One-photon exchange approximation
Gell Mann - Goldberger two-potential formula

Approximate transition matrix elements

(FIT|I) = /dxdy<FSQi+/_y(o,x)§zs|/S>x

(0] T(Au(0,x)A.(0,y))[0)(e'| (0, y)le)

Qet = Ii@ e/Hste—Hot or bound state
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Scattering Equivalences - change of representation

H. = WH,WT
Se=qal. o,
Qs =5 — lim eMtne=itot Q. =s— lim eMstr) g iHot

t—+oo

Se=S — Wiw =1

t—+o0

and

s— lim (WN—-M)e "t =0  both time limits!

t—+oo

Models and many-body strong currents are representation
dependent.



For translationally and rotationally invariant W

[W7 Ps] = [Wa Js] =0

a consistent calculation requires

H. = WH,WT

K. = WK, W1

12(0) = WiL ()W



Given a relativistic model of strongly interacting particles

e The impulse current is not consistent with the dynamics

e It is possible to compute independent current matrix
elements and use current covariance and current
conservation to calculate the the remaining current
matrix elements. The results will depend on the choice
of independent matrix elements. In addition this method
cannot be consistently applied to different reactions.

e Is it possible to construct a strong current operator that
is consistent with the relativistic dynamics?



Weyl representation
Irreducible set of operators {q;,p;}

Any operator, H, (local or non-local) can be expressed in the
form:

A = / d*¥ad*"bh(a,b)e™de™P
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Relativistic case - irreducible operators {q;,p;}
q; = Newton-Wigner position operator
function of single-particle Poincaré generators

L 1.1 P,' X (H,'J,' — K,‘)
4= Kk = VH(M; + 1)

5l =iV,

where the partial derivative is computed holding the
canonical spin constant (recall Wigner rotations are
momentum dependent).

lgi, pj] = —idj;



Define the strong current using local gauge invariance

Steps
Represent the relativistic Hamiltonian in the Weyl
representation.

Replace the operators p; in the Weyl representation of
the Hamiltonian by gauge covariant derivatives.

Extract the term linear in the vector potential

Identify the current with the coefficient of the vector
potential

Factorization requires dealing with non-commuting
operators.



Hs — A = / d*Nad®Vbh(a, b)e’d/(P-eA@) b
The term linear in A(q) (use Trotter product formula to get)

dH
ei
de ‘e*O

/ d)\/d3” d*'bh(a, b)e’aqe”\prA b1 AP

Problem of non-commuting operators



Since p; generates translations use
ei)\f)-bq e*lApb (q: + )\b )

to get:

ei/\f)-b Z A(qj) . bjei(l—)\)f).b —
J

> " A(g; + Abj) - bje'®®
J



This puts the q; dependence to the left of the p; dependence:

edili\l
de ‘e:O

1 . A A A
—/ dA/d3”ad3"bh(a,b)e'a'qZA(aj+bj).bje'P'b
0 -
J



Evaluate in the mixed representation to replace operators by
a complex kernel

elar--an|—— |pr---pn) =

d3Nad3Nb faq_iqp X A ip-b
e[ @) ~oyan7a (@, b)e™de ZA(qJ-JrAbj).bje
J



Fourier transform to get momentum space matrix elements

dH
/
(i phl G

3N, 3N 43N ) , . )
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J

P1-Pn) =




Factorization

Use

A(q; + b)) = /dq’Aé(qj +Ab; — q'))A(q)

to factor the vector potential

. df

e<p1 n’ de ‘e o‘plpn> =
PNad3VNbd3Nadd’ o, .
—e / dA / a 2:;’,\, 999 (2, b)eia (P —p=a) gipb
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Expression for vector part of the current

(P1-- Py, 0)p1---pn) =

3N 4 3N 43N of o .
—e/ d)\/d ad bd qh(a,b)e_’q (P'=p=a) gibb

E:M%+AM—qmr
J

Covariance gives the charge density

J%(q,0) = i[K', J(q,0)] no sum, any |



The relativistic kinetic energy has the form
H=/p2+m?
The above method gives
(p'[(x,0)[p) =

1
—e 1 / d\ (1 — )‘)p + )\p/ eix-(p—p’)
@23 Jo T V((T=Xp+ A+ m?

2
ivisti — ).
Compared to non-relativistic result (H = 2-):
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L P +P_ix(pp)

(p'[I(x,0)|p) = “¢2n)? 2m



Remarks - conclusions

Assumes particles are point charges. Modifications
needed for charge distributions.

Result is operators rather than matrix elements - in
principle gives applicable to different reactions.
Consistent with the dynamics - base on a gauge
invaraint Hamiltoninan.

Method applicable to non-local interactions

Light-front version - uses a different representation of
the Weyl algebra.

Charge density operator requires a representation of the
dynamical boost generator (otherwise can use current
conservation in matrix elements)

Test application - applied to NR spin orbit and [? parts
of V18, assuming point charges. results too small to
impact calculation of A, B and tensor polarzation in
elastic electron deuteron sacttering?



Thanks - organizers!



