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Goal:

Construct (front-form) relativistic models of hadrons motivated by QCD.

Elements:

QCD degrees of freedom (locally and globally SU(3) invariant).

Scales set by quark masses, 1 coupling constant, CSB scale.

Simple enough to treat sea quark degrees of freedom.

Dual QCD - hadronic representations.

Consistent treatment of scattering, decays, spectra and em properties.

Justification:

Direct QCD treatment of hadronic reactions is difficult; however QCD is a
powerful tool for deriving and constraining the structure of degrees of freedom
and interactions in models of QCD.



Inspiration:

• Structure of the model (degrees of freedom/interactions):

K. G. Wilson, Phys. Rev. D10, 2445 (1974).

J. B. Kogut and L. Susskind, Phys. Rev. D11, 395 (1975).

E. Seiler, Lecture Notes in Physics, 159, 1 (1982).

• Treatment of glue DOF

O. W. Greenberg and J. Hietarinta, Physics Letters B 86, 309 (1979).

• Scattering in confined systems

R. F. Dashen, J. B. Healy, and I. J. Muzinich, Ann. of Phys. 102, 1
(1976).



Model Hilbert space - motivation for structure:

Kogut and Susskind: (Hamiltonian lattice) degrees of freedom are mutually
non-interacting global and local SU(3) color invariant connected networks of
quarks, anti-quarks and links.

The static energy of a connected network is equal to the sum of the quark
masses and the number of links times the energy per link.

K & S Hilbert space: locally and globally gauge invariant eigenstates of quark
and anti-quark masses and link energy.

In the absence of the remaining interactions the static degrees of freedom are
confined. Local gauge invariance means separating quarks requires more links.



Model Hilbert space

Model connected local and global color singlets by confined systems of quarks
and anti-quarks. In general there will be towers of excited interactions.

Greenberg and Hietarinta: Identical quarks in different connected networks
behave like distinguishable particles due to the link degree of freedom.

〈↓↑ |�〉 = 〈0|�〉 = 0

→ Quarks and anti-quarks confined in different connected singlets are treated
as distinguishable. This eliminates Van der Waals forces.

The Hilbert space has a dual representation as space of bare confined singlets
with hadronic quantum numbers.



Dynamics

Covariant derivative and color magnetic interactions allow different connected
singlets to move and interact.

Too many gauge invariant degrees of freedom and too many interactions
between them.

Dynamical Assumption: The physics involving the lowest energy degrees of
freedom is dominated by string breaking and the “ground” confining
interaction.

No fundamental QCD justification, except that meson exchange seems to be
important in hadronic reactions and string breaking is used successfully to
model hadronic reactions in PYTHIA.

Question: Given this limitation on the degrees of freedom and interactions do
we get a consistent picture of spectral properties, lifetimes, cross sections and
electromagnetic observables using a limited set of parameters?



Model - meson valence sector:

Mass operator for a quark-anti-quark pair - scales set by model parameters:
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π and π − ρ splitting
Vcsb := (a + bsq · sq̄)δl0.

V0 and the quark masses are essentially the same parameter. This is an
arbitrary splitting of a single constant. There are no quark mass eigenstates -
there is no way to separate what we call a quark mass from what we call a
confining interaction.

We simply assume that quarks and anti-quarks transform like mass mq spin 1
2

irreducible representations of the Poincaré group (no fundamental justification).



Bare mesons

Approximate linear confinement
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Approximate Regge behavior
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The oscillator parameter is chosen to fit the Regge slope of the ρ− a mesons.

Table: Regge trajectories, J = L+ 1,S = 1 mq =
mρ

2 = .385, λ = .282

meson L exp mass exp (mass)2 J calc mass calc (mass)2

ρ 0 .770 .593 1 .770 .593
a2 1 1.320 1.742 2 1.311 1.719
ρ3 2 1.690 2.856 3 1.687 2.846
a4 3 2.040 4.162 4 1.994 3.976
ρ5 4 2.350 5.522 5 2.259 5.103
a6 5 2.450 6.000 6 2.497 6.335

〈r 2
π〉1/2 = .64 fm
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Figure: Regge trajectory for ρ and a mesons



Relativity (unitary representation of the Poincaré group

Relative momentum relativistic:

〈k2
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λ

2
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3

2
).

√
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4
≈ .46(GeV )

Bare hadron wave functions:

〈P̃, j , µ̃, k, l , s|P̃′, j ′, µ̃′, n′, l ′, s ′〉 = δ(P̃− P̃′)δµ̃µ̃′δj′jδs′sδl′ l R̃n′ l′(k).

Hadronic (dual) representation of Hilbert space:(k ↔ n)

HH := ⊕Hnjls .

Unitary representation of the Poincaré group on HH

UH(Λ, a) =
∑
njls

Unjls(Λ, a)
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f (ΛPnls)ΛBf (Pnls)]



Summary - bare hadrons

Wave functions are known analytically (harmonic oscillator).

Unitary representation of the Poincaré group - including transverse rotations.

Approximate linear confinement.

Approximate linear Regge trajectory - slope fixes λ.

Only flavor dependence is quark masses at this point.

Gauge invariant basis.



String breaking

A quark-anti-quark pair is produced with equal probability at any point on the
line between the original quark-anti-quark pair.

Delta functions are replaced by delta-function normalized Gaussians with the
width of oscillator ground state (replaces line by a “flux tube” with width
determined by oscillator parameter λ).

Spin independent vertex:

〈r1, r2, r12|v2:1|r〉 := g
√
λδ(r − 2r12)

∫ 1
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where the Gaussian approximate delta function is

δ√λ
2

(r) := (
λ

4π
)3/2e

−λr2

4

∫
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(r)dr = 1.

The dimensionless coupling constant g must be a constant of order unity.

Spin dependent part (q,q̄ have opposite parity):

Y1m (̂r12)〈s3, µ3, s4, µ4|1, µs〉〈1,ml , 1, µs |0, 0〉.



Figure: String breaking vertex



Hadronic representation of vertex (spin independent part)

The 9 dimensional integral over the initial and final bare meson states can be
computed analytically for any three bare meson states

The string breaking vertex fixes all hadronic production vertices:
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Momentum space requires a one-dimensional Fourier Bessel transform of r12.

The full vertex is defined by embedding it in the full Hilbert space so it
commutes with and is independent of P+, P⊥ and Sf .



Tweaks:

The structure of the model is constrained because the scales are essentially
fixed by one parameter.

We had trouble getting a consistent picture of scattering, lifetimes, bare meson
spectra due to these constraints.

This was fixed by applying a unitary scale transformation to the vertex that
reduced the width of the flux tube by a factor of 2.

〈n1, l1,m1, n2, l2,m2, r12|v2:1|n, l ,m〉 → (2)3/2〈n1, l1,m1n2, l2,m2, 2r12|v2:1|n, l ,m〉

This is still consistent with the scale set by the confining interaction.

The up and down quark masses were taken to be half of the ρ mass. The only
calculations sensitive to the quark masses were the form factor calculations.
Pion form factor calculations ignoring sea quarks were closer to data using
mq : .385 GeV→ .2 GeV. These calculations did not include sea quark
contributions.



Sea quarks - truncation to 1+2 bare meson subspace

Model Hilbert space

H = HH ⊕ (HH ⊗HH) Hadronic representation.

H = Hqq̄ ⊕ (Hqq̄ ⊗Hqq̄) QCD DOF representation.

Bare meson unitary representation of the Poincaré group

U0(Λ, a) =

(
U(Λ, a) 0

0 U(Λ, a)⊗ U(Λ, a)

)
.

String breaking dynamics

M = M0 + V =

(
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0
√
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√
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)
︸ ︷︷ ︸

M0

+

(
0 v1:2

v2:1 0

)
︸ ︷︷ ︸

V

,

vi :j is the string breaking vertex.



Dynamical Relativity

String breaking vertex constructed to commute with light-front kinematic
subgroup and sf 0 (not J0!).

Diagonalize M in the basis of simultaneous eigenstates of M0,P
+
0 ,P0⊥, s

2
0 , s0fz

and invariant degeneracy quantum numbers, d .

U(Λ, a) is defined so these states transform irreducibly

U(Λ, a)|(M, s, d)P̃, µ̃〉 :=

e−ia·ΛPM
∑
ν̃

|(M, s, d)Λ̃ΛΛ,PM , ν̃〉
√

(ΛP)+

P+
Ds
ν̃µ̃[B−1

f (ΛPM)ΛBf (PM)]

This is different than U0(Λ, a). It requires diagonalizing M. The operators
M,P+

0 ,P0⊥, s
2
0 , s0fz are commuting self-adjoint operators. U(Λ, a) is defined so

simultaneous eigenstates of these operators transform irreducibly.



Mass eigenvalue problem:

|Ψ〉 =

(
|Ψ1〉
|Ψ2〉

)
Coupled eigenvalue equations

(λ−Mc)|Ψ1〉 = v1:2|Ψ2〉

(λ−
√

M2
c1 + q2 +

√
M2

c2 + q2)|Ψ2〉 = v2:1|Ψ1〉
These decouple

|Ψ1〉 = (λ−Mc)−1v12(λ−
√

M2
c1 + q2 +

√
M2

c2 + q2))−1v2:1|Ψ1〉
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√

M2
c1 + q2 +

√
M2

c2 + q2))−1|Ψ1〉
Normalization

1 = 〈Ψ1|Ψ1〉+ 〈Ψ2|Ψ2〉
〈Ψ2|Ψ2〉 = sea quark probability

Equation still has an infinite number of channels - it requires a truncation.

Mass eigenvalues are real zeroes of F (λ) between 0 and the two meson
threshold:

F (λ) = det

(
I − (λ−Mc)−1v1:2(λ−

√
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c1 + q2 +
√

M2
c2 + q2))−1v2:1
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.



Results:

Model calculation keeping 2 qq̄ channels with n ≤ 4:

Table: Parameters

λ .282 (GeV)2

g 5.44
mq = mq̄ .385 GeV
mπ0 .160 GeV
mρ0 .882 GeV

Table: Results

bare pion mass .1600 GeV
mπ - 2nd order perturbation theory (n ≤ 4) .1327 GeV
mπ exact (n ≤ 4) .1329 GeV
valence quark probability 82%
sea quark probability 16%



Scattering of bare mesons:(s-channel case)

Time-dependent methods result in coupled equations

T 22(e + i0+) = 0 + v2:1(e −M1 + i0+)−1T 12(e + i0+)

T 12(e + i0+) = v1:2 + v1:2(e −M2 + i0+)−1T 22(e + i0+).

These equations can expressed in terms of the solution of

T 12(e + i0+) = v1:2 + v1:2(e −M2 + i0+)−1v2:1(e −M1 + i0+)−1T 12(e + i0+).

This equation has an infinite number of poles in the continuum. These are
spurious and can be eliminated by defining

Γ12(e + i0+) := (e −M1 + i0+)−1T 12(e + i0+)

Γ12(e + i0+) = (e −M1 − v1:2(e −M2 + i0+)−1v2:1)−1v1:2

T 22(e + iε+) = v2:1
1

e −M1 − v1:2(e −M2 + i0+)−1v2:1
v1:2

This has no spurious singularities in the continuum.

Note that there are no long-range Van der Waals forces because the quarks in
different singlets are treated as distinguishable.

Data: Phys. Rev. D7,1279(1973), Phys. Rev. D12,681(1975).
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Figure: s-channel π − π scattering cross section



Unstable particles

When
Mn1,n2,0 < Mn0

Mn1,n2,q120 = Mn0 has solutions for real q2
120 that depend on n1 and n2:

q2
120 =

M4
n1

+ M4
n2

+ M4
n0
− 2M2

n1
M2

n2
− 2M2

n1
M2

n0
− 2M2

n2
M2

n0

4M2
n0

The decay width is

Γ =
∑
n1n2

2π
q120ωn1(q120)ωn2(q120)

ωn1(q120) + ωn2(q120)
|〈n1, n2, q120|v21|n0〉|2

The sum is over the open decay channels.

Table: Results

bare ρ mass .882 GeV
position ρ resonance (fixes g) .770 GeV
shift -.122 GeV
calculated width of ρ resonance .134 GeV
experimental width of ρ resonance .150 GeV



Pion Form factor - including sea quark contributions

Fπ(Q2) = 〈π, p̃′|I+(0)|π, p̃〉

Fπ(Q2) =

1〈π, p̃′|Iµ(0)|π, p̃〉1+

1〈π, p̃′|Iµ(0)| 1

mπ −M2
v2:1

1

mπ −M1
|π, p̃〉1+

1〈π, p̃|
1

mπ −M1
v12

1

mπ −M2
|Iµ(0)|π, p̃〉1+

1〈π, p̃|
1

mπ −M1
v12

1

m∗π −M2
|Iµ(0)| 1

m∗π −M2
v2:1

1

mπ −M1
|π, p̃′〉1

Calculations below do not include sea quark contribution

FF data from: Nuclear Physics B 277, 168 (1986), Phys. Rev. Lett. 86, 1713
(2001), Phys. Rev. D 17, 1693 (1978)

cp: Phys. Rev. C 71, 028202 (2005).
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Conclusions/Outlook:

• Simple models with the same # of parameters as QCD and dynamics given
by string breaking gives a qualitatively consistent picture of spectral properties,
lifetimes, cross sections and electromagnetic properties.

• Predicts sea quark properties (about 16%) for pion.

• (Posigula - UI undergraduate) Similar calculations treating baryons as a
confined singlet consisting of a quark and di-quark using the same parameters
gives a baryon spectrum that qualitatively agrees with experiment. Predicts
percentage of sea quarks in the proton (did not include spin dependent part of
vertex).

To do:

• Treatment of exotics using di-quarks.

• Include spin dependent vertex in baryon calculations.

• Nucleon and pion form factors including contribution from sea quarks.

• Include flavor dependence.

• Calculate distribution functions including sea quark DOF, etc.


