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Motivation/Questions:

Motivation: Recent talks by John Collins, Matthias Burkhart and Philip
Mannheim on the light-front vacuum and the relation between instant and
front-form dynamics.

• U0(Λ, a) and U(Λ, a) act on inequivalent representations of the field theory
Hilbert space. What is a kinematic subgroup?

• What do we mean by forms of the dynamics in the absence of a kinematic
representation of the Poincare group?

• Hard to separate issues related to renormalization, rotational covariance and
triviality of the vacuum.

• “Axiomatic treatment”: Use accepted properties of field theories to bypass
difficult questions about renormalization and rotational covariance.

• Can we understand equivalence (or not) of instant and front-form theories,
the relation of the vacua, triviality of the light-front vacuum and the different
realizations of spontaneous symmetry breaking?



Summary of results:

• Equivalence: It is possible to construct S-matrix equivalent representations of
the field theory that have the same vacuum where transformations in the
light-front resp. instant-form kinematic subgroups can be computed by acting
on the basis vectors. The basis vectors are not from a kinematic representation,
and the dynamical generators are not diagonal in this representation.

• Triviality of the vacuum: The vacuum is a linear functional on an algebra of
smeared fields, 〈0|φ(f1) · · ·φ(fN)|0〉. Vectors are represented by equivalence
classes of test functions in 4 variables. Different vacuum functionals can agree
for test functions restricted to a light front. Dynamics is needed to extend the
definition of the vacuum to equivalence classes with test functions in S(R4).

• Spontaneous symmetry breaking: If there is spontaneous symmetry breaking
there is a Goldstone boson in both representations, but it can only be seen
using a cutoff instant form charge operator that exists in both representations.



Forms of Dynamics: (Dirac 1949)

Generators {H,P, J,K} of the Poincaré group satisfy the commutation relations

[K i ,P j ] = iδijH H = H0 + V

Three independent commutators with H on the right - require at least three
generators with interactions.

Forms of dynamics classified by kinematic subgroups:

U(K)U†0 (K) = I K = Kinematic subgroup

The three largest kinematic subgroups, K , are the 3-dimensional Euclidean
group (6 parameters), the Lorentz group (6 parameters), and the group that
leaves a light-front hyperplane invariant (7 parameters).



The problem:

The separation H = H0 + V does not make sense in quantum field theory.

U(Λ, a) and U0(Λ, a) live on inequivalent representations of the Hilbert space.

What is a kinematic subgroup if there is no kinematics?



Assumptions: (generally accepted properties of field theory)

1) Hilbert space, H

2) Unitary representation, U(Λ, a), of the Poincaré group on H

3) Poincaré invariant vacuum vector, |0〉

4) One-particle states

5) Cluster properties

6) Locality

7) Asymptotically complete Haag-Ruelle scattering theory



Hilbert space: (comments on inequivalent representations)

Dense set of vectors in the Hilbert space H (GNS construction):

|ψ〉 = P(φ(f ))|0〉 fi (x) ∈ S(R4)

The vacuum determines the Hilbert space inner product. 〈ψf |ψi 〉 can be
expressed in terms of

L[φ(f1) · · ·φ(fN)] = 〈0|φ(f1) · · ·φ(fN)|0〉

Vectors are represented by equivalence classes of test functions. The classes are
determined by the vacuum functional. For example for free fields test functions
whose Fourier transforms agree on the mass shell are in the same class. These
functions will not generally be equal on a different mass shell.

Test functions in different equivalence classes can agree on a light-front.



Relativity:

If the vacuum is invariant and the fields transform covariantly there is a unitary
representation of the Poincaré group on H. It decomposes H into a direct
integral of Poincaré irreducible subspaces:

I =
∑∫

⊕
|(m, s, d)p, µ〉δ(p2 + m2)θ(p0)d4p〈(m, s, d)p, µ|

Each Poincaré irreducible subspace is characterized by a mass, spin and
Poincaré invariant degeneracy parameters d .

U(Λ, a) acts irreducibly on each of these subspaces

U(Λ, a)|(m, s, d)p, µ〉 =
s∑

ν=−s

e iΛp·a|(m, s, d)Λp, µ〉Ds
νµ[B−1(Λp)ΛB(p)]

(covariant normalization)



Particles:

One-particle subspaces are associated with point spectrum eigenvalues, m, of
the mass Casimir operator of the representation of the Poincaré group.

A basis on each one-particle subspace can be constructed out of simultaneous
eigenstates of four mutually commuting functions of the Poincaré generators.
Relevant choices are

|(m, s, d) p, µc〉 |(m, s, d) p+, p⊥, µf 〉 |(m, s, d) v, µc〉

I call these instant, front and point-form bases.

The three one-particle bases are related by variable changes. The variable
changes depend on m, so the transformations are different for each m in the
spectrum of the mass Casimir operator. For example:

|(m, s, d)p, µc〉 =
∑
νf

|(m, s, d)p+, p⊥, νf 〉

√
p+

em(p)
Ds
νf νc [B−1

f (p/m)Bc(p/m)]



S-matrix equivalent quantum theories

In order to study the equivalence of different forms of dynamics it is useful to
study the group of “S-matrix equivalent” quantum theories.

This requires a formulation scattering theory.

Because we want to construct a group of operators is it useful to use a
formulation of scattering theory that uses strong limits.

Haag-Ruelle scattering is the field-theoretic generalization of non-relativistic
time-dependent scattering based on strong limits.

Unitary equivalence 6= S-matrix equivalence. Example: Two Hamiltonians with
different short-range repulsive potentials have the same spectrum (are unitarily
equivalent) but do not have the S-matrices.



Haag-Ruelle scattering - two Hilbert space treatment

Single-particle states can be expressed as functions of the field operators
applied to the vacuum

|(m, s, d)p, µc〉 = A†m,s,I (p, µ)|0〉 〈0|A†m,s,I (p, µc) = 0

or

|(m, s, d)p+, p⊥, µf 〉 = A†m,s,F (p+, p⊥, µf )|0〉 〈0|A†m,s,F (p+, p⊥, µf ) = 0

or
|(m, s, d)v, µc〉 = A†m,s,P(v, µ)|0〉 〈0|A†m,s,P(v, µc) = 0

where normalizable single particle states have the form

|ψ〉 =
∑∫

dpA†m,s,I (p, µ)|0〉f (p, µ) etc.

The A†s create (only) one-particle states out of the vacuum however products
of these operators applied to the vacuum are not mass eigenstates, and cannot
be identified with N-particle states.

The labels I ,F ,P correspond to instant, front, point form. The operators
A†m,s,X can be constructed to transform covariantly with the X kinematic
subgroup.



Two Hilbert space scattering theory: (asymptotic channel spaces - Hα)

For each N- particle scattering channel α construct a channel Hilbert space Hα:

Hα =
∏
i∈α

L2(pi , µi ), Hα =
∏
i∈α

L2(p+
i , pi⊥, µi ) · · ·

and a mapping from Hα in the instant form basis to H:

ΦIα|f1 · · · fN〉α =

∫
d3Np

∑
A†mN ,sN ,I

(pN , µN) · · ·A†m1,s1,I
(p1, µ1)|0〉×

f1(p1, µ1) · · · f1(pN , µN)

and

ΦFα|f1 · · · fN〉α =

∫
d3N p̃

∑
A†mN ,sN ,F

(p+
N , pN⊥, µN) · · ·A†m1,s1,F

(p+
1 , p1⊥, µ1)|0〉×

f1(p+
1 , p1⊥, µ1) · · · f1(p+

N , pN⊥, µN)

from Hα in the front-form basis to H.
There is a N-free particle unitary representation of the Poincaré group on Hα:

Uα(Λ, a) = ⊗iUmi si (Λ, a)

The ΦXα (X=F,I,P) are constructed to satisfy

U(KX )ΦXα = ΦXαUα(KX ) KX = X - kinematic subgroup



Denote the set of all channel, including the one-body and vacuum channels, by
A. Define the asymptotic Hilbert space

HA = ⊕α∈AHα
and the mapping ΦXA : HA → H by

ΦXA =
∑
α∈A

ΦXα

Channel wave operators are defined by the strong limits

ΩXα± := lim
t→±∞

U(I , t)ΦXαUα(I ,−t) Sαβ = Ω†Xα+ΩXβ−

These extend to all of HA
ΩX± :=

∑
Xα∈A

ΩXα± S = Ω†X+ΩX−

Intertwining relations give relativistic invariance of S :

U(Λ, a)ΩX± = ΩX±UA(Λ, a)

but the symmetries of the mappings ΦXA are limited to the Kinematic
subgroups

U(KX )ΦXA = ΦXAUA(KX )

Asymptotic completeness means that Ω± are unitary mappings from HA to H.
S is the scattering operator, it is independent of the choice of ΦXA.



Equivalences I: (general properties of scattering theory)

H = P− + P3 P3ΦIA = ΦIAP
3
A

e iHtΦIAe
−iHA = e i(P

−+P3)tΦIAe
−i(P−A+P3

A)t = e iP
−tΦIAe

−iP−A t .

H =
1

2
(P+ + P−) P+ΦFA = ΦFAP

+
A

e iHtΦFAe
−iHA = e i(P

−+P+)t/2ΦFAe
−i(P−A+P+

A)t/2 = e iP
−t/2ΦFAe

−iP−A t/2.

Ω±(H,ΦXA,HA) = Ω±(P−,ΦXA,P
−
A)

ΦIA and ΦFA result in the same scattering operator (follows by cluster
properties - property of Haag-Ruelle scattering).

Ω±(HF ,ΦFA,HA) = Ω±(HI ,ΦIA,HA)

For either ΦIA. S can be calculated using H or P−.



Equivalences II: (Ekstein’s theorem - W ∈ group of scattering equivalences)

S(H,ΦA,HA) = S(H ′,Φ′A,HA)

⇓
W = Ω+(H ′,Φ′A,HA)Ω†+(H,ΦA,HA) = Ω−(H ′,Φ′A,HA)Ω†−(H,ΦA,HA)

WΩ†±(H,ΦA,HA) = Ω†±(H ′,Φ′A,HA)

H ′ = WHW † lim
t→±∞

‖(Φ′A −WΦA)e−iHAt |ψ〉‖ = 0

Conversely, W unitary satisfying

H ′ := WHW †

lim
t→±∞

‖(Φ′A −WΦA)e−iHAt |ψ〉‖ = 0

⇓
WΩ†±(H,ΦA,HA) = Ω†±(H ′,Φ′A,HA)

and
S(H,ΦA,HA) = S(H ′,Φ′A,HA)



Construction of Forms of Dynamics:

Choose VI and VF unitary operators on H satisfying

[VF ,U(KF )] = 0 [VI ,U(KI )] = 0

Define

UI (Λ, a) := VIU(Λ, a)V †I UF (Λ, a) := VFU(Λ, a)V †F

Assume in addition

lim
t→±∞

‖(ΦVIA − VIΦIA)e−iHAt |ψ〉‖ = 0

lim
t→±∞

‖(ΦVFA − VFΦFA)e−iP−A t |ψ〉‖ = 0

By Ekstein’s theorem the resulting unitary representations of the Poincaré
group are scattering equivalent to the original theory and to each other.



Equivalence III

HF = VFHV
†
F HI = VIHV

†
I

P−F = VFP
−V †F P−I = VIP

−V †I .

for (Λ, a) ∈ K

UI (ΛKI , aKI ) = U(ΛKI , aKI ) UF (ΛKF , aKF ) := U(ΛKF , aKF )

Key relations:

VIΩ±(H,ΦIA,HA) = Ω±(HI ,VIΦIA,HA) = Ω±(HI ,ΦVIA,HA)

VFΩ±(H,ΦFA,HA) = Ω±(HF ,VFΦFA,HA) = Ω±(HF ,ΦFA,HA)

Ω±(H,ΦIA,HA) = Ω±(H,ΦIF ,HA)

Combining these gives

Ω±(HI ,ΦVIA,HA) = VIΩ±(H,ΦIA,HA) =

VIΩ±(H,ΦFA,HA) = VIV
†
F Ω±(H,ΦFA,HA) = VIV

†
F Ω±(P−,ΦFA,P

−
A)

Since the scattering equivalences form a group it follows that

S(HI ,ΦVIA,HA) = S(H,ΦA,HA) = S(P−,ΦFA,P
−
A)



Contrast with QM case:

Start with a direct integral of irreducible representations in covariant form,
Ucov (Λ, a)

UF (Λ, a)↔
{

U0(Λ, a)

Ucov (Λ, a)

}
↔ UI (Λ, a)︸ ︷︷ ︸

←VFV
†
I
→

QM : UX (KX )U†0 (KX ) = UX (KX )U†cov (KX ) = I X = P,F , I

Uf (Λ, a)↔ Ucov (Λ, a)↔ UI (Λ, a)︸ ︷︷ ︸
←Vf V

†
I
→

QFT : UX (KX )U†cov (KX ) = I X = P,F , I

Difference in field theory case: Absence of U0(Λ, a) or M0.



Kinematic transformations?

Choose an irreducible basis associated with the representation Ucov (Λ, a)

〈(m, s, d)p, µ|UI (KI )|ΨI 〉 = 〈ΨI |U†cov (KI )|(m, s, d)p, µ〉∗

〈(m, s, d)p+p⊥, µ|UF (KF )|ΨF 〉 = 〈ΨF |U†cov (KF )|(m, s, d)p+p⊥, µ〉∗

Irreducible bases of H with instant or light-front variables are related by a
variable change:

|(m, s, d)p, µc〉 |(m, s, d)p+, p⊥, µf 〉 |(m, s, d)v, µc〉

The original U(Λ, a) plays the role of U0(Λ, a)



Remarks:

1. In this construction the unitary representation of the original field theory
behaves like a kinematic representation - but it is not a free particle
representation; it is scattering equivalent to the other representations.

2. The instant and front-form dynamical operators are not diagonal in the
irreducible basis of the original field theory.

3. Instant and front-form dynamical operators commute with the generators
of kinematic subgroups in the in the original representation of the field
theory.

4. The theories have the same S matrix elements and are all related by
unitary scattering equivalences.



Remarks:(continued)

5. The vacuum in the instant, light-front and original theory are unitarily
equivalent and can be made identical depending on the choice of VX s.

6. There is a large class of scattering equivalences that preserve a given
kinematic subgroup. This means that the “instant” and “front form”
representations are not unique.

7. Some common elements in construction of Sokolov and Shatnyi (except
no U0(Λ, a)).



Spontaneous Symmetry Breaking 1:

The signal for spontaneous symmetry breaking is a 0 mass particle in the mass
spectrum. Coleman (Goldstone) gives the condition:

lim
R→∞

〈0|[QR , φ(y)]|0〉 6= 0

implies the existence of a 0 mass particle. Here

〈0|[QR , φ(y)]|0〉 := 〈0|[
∫

dxχR(|x|)j0(x, t), φ(y)]|0〉

where χR(|x|) is a smooth function that is 1 for |x| < R and 0 for |x| > R + ε
for some finite positive ε. The cutoff function χR ensures that the integral
converges for large |x|. Locality implies that the commutator vanishes for x − y
space-like. In this case

〈0|[QR , φ(y)]|0〉 := 〈0|[
∫

dxχR(|x|)j0(x, t), φ(y)]|0〉 =

∫
dx〈0|[j0(x, t), φ(y)]|0〉.

This condition does not require that the charge operator to exist.



Spontaneous Symmetry Breaking 2:

Current conservation implies

〈0|[
∫

dx∂µj
µ(x, t), φ(y)]|0〉 = 0.

Inserting a complete set of intermediate states gives

0 =
∑∫

dx

(
〈0|∂µjµ(x, t)|p, n〉 dp

2p0
n
〈p, n|φ(y)|0〉

−〈0|φ(y)|p, n〉 dp

2p0
n
〈p, n|∂µjµ(x, t)|0〉

)
=

∑∫
dx

(
〈0|∂µjµ(0, 0)|p, n〉 dp

2p0
n
〈pr , n|φ(0)|0〉e ip·(x−y)

−〈0|φ(0)|p, n〉 dp

2p0
n
〈p, n|∂µjµ(0, 0)|0〉e ip·(y−x)

)
.

where Poincaré covariance has been used to remove the non-trivial x , y and p
dependence from the matrix elements. pr is the constant rest four momentum
for massive states and a constant light-like vector for massless states.



Spontaneous Symmetry Breaking 3:

For a scalar field theory the vacuum expectation value of the current vanishes
so the vacuum does not appear as an intermediate state. The Lehmann
weights that appear in this matrix element

σ(mn)m2
n =

∫
dpnr
2p0

n
〈0|∂µjµ(0, 0)|pnr , n〉〈pn, n|φ(0)|0〉

and

σ∗(mn)m2
n =

∫
dpnr
2p0

n
〈0|φ(0)|pn, n〉〈pn, n|∂µjµ(0, 0)|0〉

must vanish when added. Using the same expansion in

〈0|[QR , φ(y)]|0〉 = 0

gives the same result, but without the factor m2. This will vanish unless σ(m)
includes a δ(mn). An operator like QR does not exist in the light front case
because locality is not available to cutoff the integral. The operator QR exists
in both representations, but it is dynamical in the light front case.



Conclusions:

1. It is possible to construct scattering equivalent theories with instant and
light-front kinematic subgroups that are scattering equivalent to the
covariant field theory (Wightman functions).

2. The covariant field theory unitary representation of the Poincaré group
replaces the non-interacting representation.

3. The vacuum vectors can be chosen to be identical but generally are
unitarily equivalent.

4. Restriction to a light front hyperplane does not completely define a
vacuum functional.

5. Implications for perturbative calculations remain an open problem.



〈0|B†B|0〉

B(x) = U(x)BU†(x)→ B̃(p)

B̃(p)→ B̃(p)h(p)→ B̂(x) =

U(t)B̂(0, x)U†(t) = U(x+)B̂(0, x−, x⊥)U†(x+)

AF = ˜̂B(x+ = 0, p+, p⊥)

AI = ˜̂B(t = 0, p)

integrals of φ̃(p)h(p) over p0 or p−.


