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Light-front quantum field theory
Advantages:

• Hamiltonian formulation - non-perturbative calculations
are reduced to linear algebra.

• Light-front preserving boosts are kinematic.

• Light-front boosts form a closed subgroup - light-front
spins do not Wigner rotate.

• Frame-independent impulse approximation.

• Vacuum is essentially trivial.

• Fields restricted to the light front are irreducible.
• 7 parameter (largest) kinematic subgroup - three

translations, three boosts, one rotation.



Light-front quantum field theory
compared to canonical or covariant QFT

• The problem of inequivalent representations of the
canonical commutation relations.

• The problem of the trivial vacuum.

• The problem of the ill-posed initial value problem.

• The problem of rotational covariance.

• The problem of zero modes.

• The problem spontaneously broken symmetries.



Brief summary of conclusions

• Each theory has one true (dynamical) vacuum.
• The Wightman functions can be expressed as vacuum

expectation values of operators restricted to a light
front, using the vacuum vector of any theory.

• The dynamical content of different theories is contained
in a light-front sub-algebra rather than the vacuum.

• The dynamical sub-algebra of LF operators is causal.
• Rotational invariance and space reflection symmetry are

not encoded in P− and the kinematic generators.
• SSB charges on the light-front have no dynamical

content; Fixed-time conditions for Goldstone bosons can
be expressed in terms of the dynamical light-front
sub-algebra.

• The rest of this talk will be used to clarify these remarks.



Background - Field Algebras

• Heisenberg field algebra

ϕH(f ) :=
∫

d4x
∑
i

ϕi (x)fi (x), f ∈ S(R4)

• Canonical field algebra

ϕC (f ) :=
∫

d3x
∑
i

ϕi (t = 0, x)fi (x) f ∈ S(R3)

πC (f ) :=
∫

d3x
∑
i

πi (t = 0, x)fi (x) f ∈ S(R3)

• Light-front field algebra

ϕLF (f ) :=
∫

d x̃
2
∑
i

ϕi (x+ = 0, x̃)fi (x̃) x̃ = (x−, x⊥)

f ∈ Sss(R3) f̂ (p+,p⊥)/p+ → 0 as p+ → 0



Vacuum functionals

• Vacuum - linear functional, L, on the field algebra:

|ψ⟩ = A(ϕx)|0⟩ GNS construction

⟨ψ|χ⟩ = ⟨0|A†(ϕx)B(ϕx)|0⟩ := L(A†(ϕx)B(ϕx))
• Heisenberg vacuum - defined by Wightman distributions

H⟨0|ϕH1(f1) · · ·ϕHn(fn)|0⟩H

• Canonical vacuum, ϕ(x, 0), π(x, 0) → a(p)

a(p)|0⟩C = 0 C ⟨0|ϕC1(f1) · · ·ϕCn(fn)|0⟩C

• Light-front vacuum, ϕ(0, x−, x⊥, 0) → a(p̃)

a(p̃)|0⟩LF = 0 p̃ = (p+,p⊥)

LF ⟨0|ϕLF1(f1) · · ·ϕLFn(fn)|0⟩LF
• |0⟩LF does not have enough information to uniquely

determine the Heisenberg vacuum, |0⟩H .



Irreducibility [O, ai ] = [O, a†i ] = 0∀i → O = cI

• Canonical case - operators depend on mass (dynamics)

a(p) = 1√
2ωmi (p)

(ωmi (p)ϕ̂(p)x0=0 + i π̂(−p)x0=0),

a†(p) = 1√
2ωmi (p)

(ωmi (p)ϕ̂(p)x0=0 − i π̂(−p)x0=0)

• Light-front case - operators kinematic (independent of
mass)

a(p̃) =
√

2p+θ(p+)ϕ̂(p̃)x+=0 a†(p̃) =
√

2p+θ(p+)ϕ̂(−p̃)x+=0

• Relation:

a(p̃) := a(p)

√
ωm(p)
p+ |∂p̃

∂p | = p+

ωm(p)



Free fields

• Heisenberg fields can be expressed in terms of canonical
or light-front creation and annihilation operators.

+++

• Creation and annihilation operators can be expressed in
terms of canonical equal time fields or fields on the light
front.

⇓⇓⇓

• Algebra of Heisenberg fields can be expressed in terms
of canonical or light front algebra.



• Heisenberg → canonical

ϕH(f ) =
∫

dy(fϕ(y)ϕC (y) + fπ(y)πC (y))

where

fϕ(y) =
∫

d4xf (x)Kϕm(x , y) fπ(y) =
∫

d4xf (x)Kπm(x , y)

fϕ(y), fπ(y) ∈ S(R3)

• Heisenberg → light front

ϕH(f ) =
∫

d ỹfm(ỹ)ϕLF (ỹ)

fm(ỹ) =
∫

d4xf (x)Km(x , ỹ) = Km(f , ỹ) fm(ỹ) ∈ Sss(R3)

Km(x , ỹ) :=
∫

d p̃
(2π)3 e

−ix+ p2
⊥+m2

2p+ e−i p
+·(x−−y−)

2 +ip⊥·(x⊥−y⊥).



• Kernel, Kϕm, transforms covariant generators to
light-front generators. For example:

2i ∂

∂x+Km(x , p̃) = Km(x , p̃)
p2
⊥ + m2

p+

where
Km(x , p̃) :=

∫
Km(x , ỹ)dy

+dy⊥
2 e i ỹ·p̃.



Interacting fields (assumptions - Wightman axioms,
asymptotic completeness)

• IN fields: irreducible and unitarily equivalent to free
fields.∫

ΦIN(x)f ∗(x)d4x =
∫

ΦIN(y+ = 0, ỹ)Km(x , ỹ)f ∗(x)d4x =

∫
ΦIN(y+ = 0, ỹ)fm(ỹ)dy

−dy⊥
2 .

• Irreducibility implies Heisenberg fields can be expressed
in terms of normal products of IN fields (Glaser,
Lehmann, Zimmerman 1957):

ΦH(f ) =∑∫
Rn(x ; x1 · · · xn)f (x)d4x : ΦIN(x1) · · ·ΦIN(xn) :

∏
k

d4xk .



Combining these results

• The smeared interacting Heisenberg fields,

ΦH(f ) =∑∫
Rn(x ; x1 · · · xn)f (x)d4x

∏
k

d4xkd ỹkKmk
(xk , ỹk)×

: ΦLF (ỹ1) · · ·ΦLF (ỹN) :

can be expressed as elements of a complicated dynamical
sub algebra of the free-field light-front Fock algebra.

• Vacuum expectation values depend on the sub algebra
but again are independent of the choice of vacuum on
the light front.



Summary - free fields

• Interchangeable vacuum functionals

H1⟨0|A|0⟩H1 =LF1 ⟨0|K1A|0⟩LF1 =LF2 ⟨0|K1A|0⟩LF2

H1⟨0|A|0⟩H1 ̸=H2 ⟨0|A|0⟩H2

LF1⟨0|K1A|0⟩LF1 ̸=LF1 ⟨0|K2A|0⟩LF1

• Vacuum expectation values of smeared Heisenberg fields
can be expressed as light-front vacuum expectation
values of a sub algebra of the light-front field algebra.

• The result depends on the sub algebra but is
independent of the choice of light-front vacuum.



The problem of inequivalent representations of the canonical
commutation relations, [q, p] = i .

• Stone Von Neumann theorem (2 harmonic oscillators)

q = 1√
2ω

(
a + a†

)
p = −i

√
ω

2

(
a− a†

)
a′ = cosh(η)a + sinh(η)a†

cosh(η) := 1
2

(√
ω′

ω
+
√
ω

ω′

)
[q′, p′] = i

• Canonical transformation → unitary transformation

U = e iG G = (− i

2η(a1a1 − a†1a
†
1))

• Infinite number of degrees of freedom (QFT)

∥G |ψ⟩∥ = ∞ ∀ |ψ⟩, |0′⟩ = U|0⟩ = ∞



Canonical free fields

a2(p) = cosh(η(p))a1(p) + sinh(η(p))a†1(p)

• where

cosh(η(p)) := 1
2

(√
ωm2(p)
ωm1(p) +

√
ωm1(p)
ωm2(p

)

∥G |0⟩1∥2 = 1
4

∫
η(p)2dpδ(0) = ∞.

• Representations inequivalent for m1 ̸= m2

• While the light-front field algebras for different masses
are unitarily equivalent, the sub algebras associated with
the Heisenberg algebras are not.



Trivial vacuum

P+|0⟩f = 0 P+ =
∑
i

P+
i ; P+

i ≥ 0

V := M −M0

P+V |0⟩f = VP+|0⟩f = 0.

f ⟨0|V †V |0⟩f =
∫

|⟨p+, d |V |0⟩|2dµ(p+)dd = |f ⟨0|V |0⟩f |2

V |0⟩f = |0⟩f f ⟨0|V |0⟩f

0 = M2|0⟩f = (M2
0 + VM0 + M0V + V 2)|0⟩f =

V 2|0⟩f = |0⟩f f ⟨0|V |0⟩2
f



Trivial vacuum

• The above argument ignores the need for
renormalization - in a ϕ4 interaction the terms with 4
creation operators have singularities that invalidate the
above argument:∫

θ(p+)δ(p+)dp+

(p+)2∏ ξi

∏
dpi⊥dξiδ(

∑
pi⊥)δ(

∑
ξi − 1)×

a†(ξ1p
+,p⊥1)a†(ξ2p

+,p⊥2)a†(ξ3p
+,p⊥3)a†(ξ4p

+,p⊥4).

• Once the theory has been renormalized, any state in the
Hilbert space can be expressed by applying an operator
from the dynamical light-front sub algebra to the
vacuum of any theory.

• While the true vacuum is not trivial, it agrees with the
trivial vacuum on operators in the dynamical light-front
sub algebra.



The ill-posed initial value problem

• Heisenberg algebra → Light front mass m sub algebra

ϕ(f ) =
∫

dy+dy⊥
2 fm(ỹ)ϕ(y+ = 0, ỹ) := ϕLF (fm)

f̂m(p̃) =
√

2πf̂ (
p2
⊥ + m2

p+ , p̃) =
∫

d4xf (x)Km(x , p̃)

Km(x , p̃) :=
∫

Km(x , ỹ)dy
+dy⊥
2 e i ỹ·p̃



Dense domain (f̂ (p) compact support)

{f (x)|f̂ (p) :=
∫

d4x

(2π)2 e
−p·x f (x),

f̂ (p) = 0 for (p0)2,p2 > R2 <∞}
⇓

|p+|, |p−| < 2R.∫
ϕ(x+, x̃)f (x − a+)d4x =

∞∑
n=0

(−ia+)n
n! (

p2
⊥ + m2

2p+ )n f̂ (
p2
⊥ + m2

p+ , p̃)

|
∞∑
n=0

(−ia+)n
n! (

p2
⊥ + m2

2p+ )n|≤
∞∑
n=0

(2Ra+)n
n! = e2Ra+

<∞.

• x+ evolution converges on dense set.



Rotational covariance zero modes

• P− and the kinematic subgroup form a closed Lie
algebra.

• Transverse rotations and space reflections are dynamical
operators that are not determined by the light-front
Hamiltonian and the kinematic subgroup.

• Given a dynamical transverse rotation operator, i.e. J2,
all of the Poincaré generators are fixed by the kinematic
subgroup and the Poincaré commutation relations

P− := P+ − 2[J2, [J2,P+]] and J1 := −i [J2, J3]

• Consistent Interactions in the transverse rotation
operator must satisfy linear and non-linear constraints

[J2
I , [J2

0 ,P
1]] = 0

and
[J2

I , [J2
I , J

3]] + [J2
0 , [J2

I , J
3]] + i [J2

I , J
1
0 ] = 0.



Rotational covariance zero modes

• Rotational covariance is equivalent to invariance with
respect to change of orientation of the light front
(Karmanov). Invariance with respect to change of
orientation implies

Uẑ(R, 0) = Ω±KẑΩ
†
±[R]Kẑ[R−1]U0(R).

• Changes of orientation of the light front transform
p+ = 0 divergences to ultraviolet divergences.

• Renormalization of both kinds of infinities are
constrained by rotational covariance and space reflection
symmetry.

• It is not sufficient to simply renormalize P−.
• Consistent p+ = 0 renormalization (zero modes) is

needed make light-front dynamical calculations
consistent with covariant calculations.



Spontaneous Symmetry Breaking

• Light-front charge commutes with P+ - it cannot change
the vacuum.

• Vacuum functionals and fields have no dynamical
content on the light-front Fock algebra; the dynamics
enters by restricting to a dynamical sub-algebra.

• Current operators are operator-valued distributions - the
charge operators do not have to exist; however for local
fields a signal for spontaneous symmetry breaking is
(Coleman)

lim
R→∞

⟨0|[QR , ϕ(y)]|0⟩ ≠ 0,

where

⟨0|[QR , ϕ(y)]|0⟩ := ⟨0|[
∫

dxχR(|x|)j0(x, t), ϕ(y)]|0⟩



Spontaneous Symmetry Breaking

• Locality cuts off the integral and the commutator can be
expressed in terms of the irreducible set of Heisenberg
fields which can be expressed in term of elements of the
dynamical sub algebra of the light front Fock algebra.

• This does not work for the light front-charge because
there is no compact region on the light front where
outside of that region (x − y) is always space-like for
fixed y and x+ = 0.



Conclusion revisited

• The algebra of fields on a light front is irreducible, but
without dynamical content. The dynamical content is in
a sub algebra.

• All light-front vacuum functionals agree on this sub
algebra. (while the vacuum is not trivial - the trivial
vacuum can be used in this sub algebra).

• Inequivalent representations are associated with different
sub algebras of the light-front Fock algebra.



Conclusion revisited (continued)

• Smeared Wightman distributions can be expressed as
trivial light-front vacuum expectation values of a
dynamical sub-algebra of the light-front Fock algebra.

• The light-front Hamiltonian and kinematic subgroup do
not determine the transverse rotation generators or
space reflection operators. Full rotational covariance and
space reflection symmetry require information, not
contained in P−, that relates renormalization of p+ = 0
divergences to ultraviolet divergences.

• Light-front charge operators do not couple to a
Goldstone boson, but commutators with the fixed-time
charge operators that are sensitive to Goldstone bosons
can be expressed in terms of the light-front Fock algebra.



Thanks - organizers!



Relativistic invariance

U(Λ2, a2)U(Λ1, a1) = U(Λ2Λ1,Λ2a1 + a2)

• implies that the infinitesimal generators satisfy the
commutation relations:

[Pµ,Pν ] = 0, [J i ,P j ] = iϵijkPk , [J i , J j ] = iϵijkJk ,

[J i ,K j ] = iϵijkK k , [K i ,K j ] = −iϵijkJk

[K i ,P i ] = iδijH [K i ,H] = iP i .



Relativistic invariance

• The relativistic analog of diagonalizing the Hamiltonian
is to decompose U(Λ, a) into a direct integral of
irreducible representations. This is equivalent to
simultaneously diagonalizing the mass and spin Casimir
operators of the Lie algebra

M2 = (P0)2 − P2 and S2 = W 2/M2

• where W µ is the Pauli-Lubanski vector

W µ = (P · J,HJ + P × K).

• The transformation properties of states in each
irreducible subspace is fixed by group theoretical
considerations.



Light-front dynamics

• Light-front generators are different linear combinations
of these generators:

P1,P2,P+ = P0 + P3, J3,K 3,E⊥ := K⊥ − ẑ × J

• The generators

P− = P0−P3 ̸= P−
0 ; and F⊥ := K⊥+ẑ×J ̸= F⊥0 or

J⊥ = ẑ × J ̸= ẑ × J0⊥

• involve interactions. The dynamical generators can be
taken as P−,F 1,F 2 or equivalently P−, J1, J2.

• The operators K 3 and E⊥, which generate light-front
preserving boosts, form a closed sub-algebra.



Generators are constructed using Noether’s theorem

L(x)

⇓

Conserved currents

⇓

Tµν(x) = ηµνL − ( ∂L
∂(∂µϕ(x)))∂αϕ(x)ηαν)

Mµαβ = Tµβxα − Tµαxβ

⇓



Kinematic Noether charges

P+ =
∫
x+=0

dx⊥dx−
2 T++(x)

P i =
∫
x+=0

dx⊥dx−
2 T+i

E i =
∫
x+=0

dx⊥dx−
2 T++x i

J3 =
∫
x+=0

dx⊥dx−
2

(
x1T+2(x) − x2T+1)

K 3 =
∫
x+=0

dx⊥dx−
2 T++(x)x−



Dynamical Noether charges

P− =
∫
x+=0

dx⊥dx−
2 T+−(x)

J1 =
∫
x+=0

dx⊥dx−
4

(
x2(T++(x) − T+−) + x−T+2)

J2 = −
∫
x+=0

dx⊥dx−
4

(
x−T+1(x) + x1(T++ − T+−))

)


