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Hamiltonian methods (advantages)

• Non-perturbative formulations possible.

• Non-perturbative dynamics reduces to linear algebra -
many available computational methods - variational,
Krylov, · · · .

• Natural for quantum computing - real time path
integrals.



Field theory challenges

• Hamiltonians involve ill-defined products of
operator-valued distributions.

• The Stone-Von Neumann theorem does not hold for
theories with an infinite number of degrees of freedom
(inequivalent Hilbert space representations).

• Non-perturbative renormalization required for
non-perturbative calculations.



Relevant Observations

• Reactions take place in a finite volume.

• The available energy in a reaction is finite; this limits
the accessible resolution.

• Locally compact Hamiltonians: Π(|r| < R)Π(H < E )
compact → a finite number of degrees of freedom are
accessible (≈ accessible volume in phase space divided
by powers of h < ∞).

• In principle any reaction can be expressed in terms of a
Hamiltonian involving these accessible degrees of
freedom ({πn, ϕn}).



Wavelet representation of local quantum field theory - takes
advantage of these observations

• Formally exact representation of the field theory.

• Operator valued distributions are replaced by infinite
expansions in well-defined almost local operators .

• The representation has natural volume and resolution
truncations. The Stone Von-Neumann theorem applies
to the truncations.

• Hamiltonians truncated to different resolutions are self
similar.

• The interactions are almost local.



Daubechies wavelets and scaling functions

• Orthonormal basis of functions on the real line
satisfying:

• Each basis function has compact support.
• There are an infinite number of basis functions with

support in any open set.
• The basis functions have some smoothness.
• The basis functions are generated from the solution of a

linear renormalization group equation by translations and
scale transformations (they are fractal valued).

• The basis functions can be used to construct exact,
locally finite representations of low-degree polynomials.

• The basis provides an efficient representation of
operators (used for data compression in jpeg and FBI
fingerprint database)

• Subsets of basis functions define locally finite partitions
of unity.



Ingrid Daubechies



Basis construction
s(x) fixed point of the renormalization group equation.

s(x) = D (
2K−1∑
l=0

hlT
ls(x))︸ ︷︷ ︸

weighted average︸ ︷︷ ︸
rescale

.

The solutions s(x) are fractal!

T : unit translation D: dyadic scale transformation

Ts(x) = s(x − 1) Ds(x) =
√

2s(2x).

The renormalization group equation is homogeneous.

scale of s(x) is fixed by
∫

dxs(x) = 1



The weights, hl , are determined by the following three the
properties of s(x)

2K−1∑
l=1

hl =
√

2 needed for solution of the RG equation

Orthonormality of integer translates∫
s(x − n)s(x −m)dx = δmn

Local pointwise representation of low-degree polynomials
(depends on K)

xm =
∑

cns(x − n) m < K

These conditions define Daubechies K scaling function s(x).
They can be used to solve for the hl .



Weight coefficients hl for different K values
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Properties of s(x) for K=3

Support (s(x)) = [0, 5] - compact.

s(x) has one continuous derivative.

Fourier transform of (s(x)) is entire.

1 =
∑

n s(x − n) (locally finite partition of unity).∫
s(x)dx =

∫
s(x)2dx = 1

∫
s(x)s(x − n)dx = δ0n

x =
∑
n

ans(x − n) x2 =
∑
n

bns(x − n)

⟨xm⟩ :=
∫

xms(x)dx exact expressions in terms of the hl .



Multi-resolution decomposition of L2(R)

Re-scale and translate the fixed point, s(x)

skn (x) := DkT ns(x) = 2k/2s
(

2k(x − 2−kn)
)
.

support(skn (x)) = [2−kn, 2−k(n + 5)]

Sk := {f (x)|f (x) =
∞∑

n=−∞
fns

k
n (x),

∞∑
n=−∞

|fn|2 < ∞}.

Sk := resolution 2−k subspace of L2(R), {skn (x)} basis

RG equation: skn (x) =
∑
l

hls
k+1
2n+l(x)

Sk ⊂ Sk+1

Sk+1 = Sk ⊕Wk Wk ̸= {∅}.



Multi-resolution decomposition of L2(R)

Sk+1 = Sk ⊕Wk

L2(R) = Sk ⊕Wk ⊕Wk+1 ⊕Wk+2 ⊕Wk+3 ⊕ · · · =

· · · ⊕Wk−2 ⊕Wk−1 ⊕Wk ⊕Wk+1 ⊕Wk+2 ⊕ · · ·

Wavelets ({wk
n (x)} orthonormal basis for Wk)

w(x) := D(
2K−1∑
l=0

glT
ls(x)) gl = (−)lh2K−1−l

wk
n (x) := DkT nw(x) = 2k/2w

(
2k(x − 2−kn)

)
.



Multi-resolution orthonormal bases

Orthonormal bases for L2(R):

{skn (x)}∞n=−∞} ∪ {wk+l
n (x)}∞n=−∞,l=0

or

{w l
n(x)}∞n,l=−∞

Orthonormal basis for L2(R3):

ξn(x) ∈ {skn (x),w l
n(x)} ξn(x) := ξn1(x)ξn2(y)ξn3(z)



Interpretation

Sk subspace of square integrable functions with
resolution 5

2k

Wk subspace adds details between resolution 5
2k and

resolution 5
2k+1

Remark

∫
xmwk

n (x)dx = 0 m < K



Wavelet Transform

Sk+n = Sk ⊗n+k−1
m=k Wm

Orthogonal transformation - relates fine scale basis to
multiple scale basis.

Orthogonal transformation: O(N), 4K×N additions

Multi-scale basis gives sparse representation of operators



Kernel, K (x , y) of a scattering integral equation after wavelet
transform

F (x) = D(x) +
∫
K (x , y)F (y)dy









Quantum fields

Exact multi-resolution decomposition of field operators

Φ(x, t) =
∑

n
Φk

n(t)ξn(x) Φk
n(t) =

∫
dxξn(x)Φ(x, t)

Π(x, t) =
∑

n
Πk
n(t)ξn(x) Πk

n(t) =
∫

dxξn(x)Π(x, t)

Canonical commutation relations

[Φn(t),Πm(t)] = iδn,m

[Φn(t),Φm(t)] = [Πn(t),Πm(t)] = 0,

Interpretation: Φn(t) average of Φ(x, t) over support of ξn .



• Expansion is exact.

• Operator valued distributions are replaced by infinite
sums of well-defined discrete field operators.

• Products of discrete fields are well defined.

• The discrete field operators are labeled by position and
resolution.

• Discrete fields satisfy canonical commutation relations.

• Exact decomposition of the field into localized
observables by resolution.

• Natural resolution (limit l) and volume (limit n)
truncations ({skn (x),wk+l

n (x)}).



Example

ϕ4(x) Hamiltonian - discrete representation
formally exact

H = 1
2
∑
m

Π̂2
m + 1

2
∑
mn

Dm,nΦ̂mΦ̂n + µ2

2
∑
m

Φ̂2
m

+λ

2
∑

m1,m2m3,m4

Γm1,m2m3,m4Φ̂m1Φ̂m2Φ̂m3Φ̂m4

where

ξn(x) ∈ {skn (x),w l
n(x)}

Dm,n :=
∫

∇∇∇ξm(x) · ∇∇∇ξn(x)dx

Γm1,··· ,mn :=
∫

ξm1(x) · · · ξmn(x)dx



Infinities due to non-convergence of infinite sums.

The numerical coefficients can be computed exactly.

The resolution k coefficients are related to resolution
zero coefficients by scale transformations and
translations:

Dk
mn = 22kD0

0,n−m Γk
m1,··· ,mn

= 2k(n/2−1)Γ0
0,m2−m1,···mn−m1

these vanish unless |m|, |mi −mj | ≤ 4 for K = 3.

The non-zero D0
0,n and Γ0

0,m2,··· ,mn
are solutions of a finite

linear systems derived using the renormalization group
equation and the scale fixing condition.



Example: Dmn

zero unless the support of sm and sn overlap

Dmn = Dm−n,0 =
∫

dsm(x)
dx

dsn(x)
dx

dx

Non-zero solutions have exact rational values

D40 = D−40 = −3/560

D30 = D−30 = −4/35

D20 = D−20 = 92/105

D10 = D−10 = −356/105

D00 = 295/56.

The Γ0
0,m2−m1,···mn−m1

can be solved by the same methods, but
there are more of them.



Heisenberg picture

Φ̇n(t) = i [H,Φn(t)] = Πn(t)

Π̇n(t) = i [H,Πn(t)] = µ2Φn(t) +
∑
nm

D0m−nΦm(t)

+4λ
∑

m1,m2,m3

Γ0,m1−n,m2−n,m−nΦm1(t)Φm2(t)Φm3(t)

This is an infinite number of non-linear coupled equations for

Φm(t) and Πm(t)

Discrete many-body quantum theory



Schrodinger picture - linear

Ψ[ϕϕϕ] := Ψ[ϕn1 , · · · , ϕnN
]

H = (−
∑
n

∂2

∂ϕ2
n

+ V [ϕϕϕ])Ψ[ϕϕϕ] = EΨ[ϕϕϕ]

i
∂

∂t
Ψ(ϕϕϕ, t) = (−

∑
n

∂2

∂ϕ2
n

+ V [ϕϕϕ])Ψ[ϕϕϕ, t]

V [ϕϕϕ] =
∑
n

µ2ϕn
2
n +

∑
nm

Dnmϕnϕm

+λ
∑

m1,m2,m3,m4

Γm1,m2,m3,m4ϕm1ϕm2ϕm3ϕm4



Non-perturbative - use Trotter product formula (path
integral)

e−iHt = lim
N→∞

[e iH0t/Ne iVt/N ]N

H0 = 1
2
∑
m

Π2
m

V = 1
2
∑
mn

Dm,nΦmΦn + µ2

2
∑
m

Φ2
m

+λ

2
∑

m1,m2m3,m4

Γm1,m2m3,m4Φm1Φm2Φm3Φm4



Example ( Nathanson-Jørgensen )

⟨ϕ1f , ϕ2f |e−iHt |ϕ1i , ϕ2i ⟩ =
∑

paths
P[path]e iV [path,t]

P = complex probability on cylinder sets of paths; V [path, t]
potential functional of paths (J. Math. Phys.
56,092102(2015)).

ϕ4(x): 2 degrees of freedom ϕ0, ϕ1

41 field amplitudes each ϕ0, ϕ1

20 time steps

t=.5

(41 × 41)20 cylinder sets of paths

P[path]e iV [path,t] factors into product of unitary operators



⟨ϕ1f , ϕ2f |e−iHt |ϕ1i , ϕ2i ⟩ =
∑

paths
P[path]e iV [path,t]
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n

path of n-th field mode
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Non-perturbative renormalization

Truncated Hamiltonians with different resolutions are
self-similar

H = 1
2
∑
m

Π̂2
m + 1

2
∑
mn

22kDm,nΦ̂mΦ̂n + µ2

2
∑
m

Φ̂2
m

+λ

2 2k(n/2)−1
∑

m1,m2m3,m4

Γm1,m2m3,m4Φ̂m1Φ̂m2Φ̂m3Φ̂m4

Functional renormalization group equation relates
Hamiltonians with different resolutions:

Hk(Π,Φ, µ, λ) = 2kH0(2−kΠ, 2kΦ, 2−2kµ, 2−2kλ]

Wave function, mass and coupling constant renormalization;
canonical transformation.



Application

Pick a starting (physical) scale - adjust parameters in H
to fix observables at that scale.

Increase resolution - readjust parameters H to fix
observables at the physical scale.

Block diagonalize Hamiltonian by scale to decouple fine
scale degrees of freedom from physical degrees of
freedom.

Gives effective Hamiltonian in terms of physical scale
degrees of freedom.



Example - free field - derivatives couple scales

Use flow equation method (Glazek-Wilson) to block
diagonalize Hamiltonian by scale (Michlin).

U(λ) = e iF (λ), F (λ) = −i [G (λ),H(λ)]

where G (λ) is the part of H(λ) with the operators that
couple different scales turned off. With this choice
G (λ) = G †(λ) so F (λ) is Hermitian.

It follows that

dH(λ)
dλ

= i [F (λ),H(λ)] = −i [H(λ), [H(λ),G (λ)]].

H(λ) is block diagonal when [H(λ),G (λ)] = 0.
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Speculations?

Formally exact locally gauge invariant formulation of QCD?
Irreducible multi-resolution set of gauge invariant operators?

For non-Abeilan case we need to treat traces (Mandelstam
identities - Phys. Rev. D19(1979)2391 SU(2) case)

δijδkl = δilδjk +
∑
m

ϵikmϵjlm



Summary - Wavelet representation

• Formally exact representation of field theories.
• Hamiltonian form non-perturbative.
• Natural volume and resolution truncations.
• Truncated fields have continuous x dependence.
• Product of distrubutions replaced by products of

operators.
• Poincaré generators truncated to resolution (violations

at higher resolution).
• Light-front formulation for applications to proton

tomography.
• Thanks: Organizers and Audience!
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