Multi-scale methods in numerical analysis

W. N. Polyzou
Other contributors: Gerald Payne, Brian Kessler, Fatih Bulut, Tracie Michlin

The University of Iowa

Outline

- Background and motivation.
- Fractals self-similarity and the renormalization group.
- Numerical analysis using the renormalization group.
- Applications.

Standard numerical methods

- Designed to work with functions that with enough magnification locally look like straight lines.
- Global basis functions (orthogonal polynomials, Laguerre functions, Hermite functions) are not efficient for representing local structures, or structures on multiple scales.
- Even local functions (for example splines) can still result in large systems of equations.

Wavelets are basis functions that can overcome these difficulties

- Used for data compression in digital photography (JPEG).
- Efficient at treating images with many different scales and structures.
- A digital photograph is just a matrix of numbers. Could this same data compression method be used to efficiently solve problems in linear algebra?
- Wavelet bases result in sparse matrices. Faster algorithms can be used and they require less storage.

Properties

- Fractal valued
- Orthonormal basis
- Compact support
- Some smoothness
- Infinite number with support in any open set.
- Pointwise represent low degree polynomials
- Locally finite partitions of unity at different resolutions.

Challenges/questions

- How do you evaluate fractal functions $\left\{\phi_{n}(x)\right\}$?

$$
f(x)=\sum f_{n} \phi_{n}(x)
$$

- How do you calculate integrals involving fractal functions?

$$
f_{n}=\int \phi_{n}^{*}(x) f(x) d x
$$

- How do you calculate derivatives of fractal functions?

$$
f^{\prime \prime}(x)=\sum f_{n} \phi_{n}^{\prime \prime}(x)
$$

What do we mean by a fractal valued function

- Looks like a copy of itself on smaller scales.
- How do we change scales mathematically?

$$
D f(x)=\sqrt{2} f(2 x)
$$

- Shrinks the support of the function by a factor of 2 , preserving the Hilbert space norm of the function.
- D is called a scaling or dilatation operator

Renormalization group equation

$$
s(x)=\underbrace{D \underbrace{\left.\sum_{l=0}^{2 K-1} h_{l} T^{\prime} s(x)\right)}_{\text {weighted average }}}_{\text {rescale }}
$$

solutions $s(x)$ are fractal!
T : unit translation $\quad D$ scale transformation

$$
T s(x)=s(x-1) \quad D s(x)=\sqrt{2} s(2 x) .
$$

h_{l} are numbers
The renormalization group equation is homogeneous $s(x)$ a solution implies $c s(x)$ is a solution the scale c is fixed by

$$
\int d x s(x)=1
$$

Properties of $s(x)$

$$
\begin{gathered}
\tilde{s}(k):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} s(x) d x \quad \tilde{h}(k):=\sum_{l} \frac{h_{l}}{\sqrt{2}} e^{-i k l} . \\
\tilde{s}(k)=\tilde{s}\left(\frac{k}{2}\right) \tilde{h}\left(\frac{k}{2}\right) \\
\tilde{s}(k)=\lim _{n \rightarrow \infty} \tilde{s}\left(\frac{k}{2^{n}}\right) \prod_{m=1}^{n} \tilde{h}\left(\frac{k}{2^{m}}\right)=\tilde{s}(0) \prod_{m=1}^{\infty} \tilde{h}\left(\frac{k}{2^{m}}\right) . \\
k=0 \quad \rightarrow \quad 1=\prod_{l=1}^{\infty} \tilde{h}(0)=\tilde{h}(0)=\sum_{l=0}^{2 K-1} \frac{h_{l}}{\sqrt{2}}
\end{gathered}
$$

$\sum_{l=0}^{2 K-1} h_{l}=\sqrt{2}$: Necessary for the renormalization group equation to have a solution

Support of the solution $s(x)$ to the RG equation

$$
\begin{gathered}
s(x)=\frac{\tilde{s}(0)}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k e^{i k x} \prod_{m=1}^{\infty} \tilde{h}\left(\frac{k}{2^{m}}\right)= \\
\sqrt{2 \pi} \tilde{s}(0) \prod_{m=1}^{\infty}\left(\sum_{l=0}^{N-1} \frac{h_{l}}{\sqrt{2}} \delta\left(x-\frac{l}{2^{m}}\right)\right)
\end{gathered}
$$

which vanishes for $x \notin[0, N-1]=[2 K-1]$.

Support of $s(x) \subseteq[0,2 K-1]$ where $N=2 K$ is the number of $h_{\text {I }}$'s
Support is compact!

All fractals are not created equal

Additional properties of $s(x)$ depend on the choice of h_{l}

$$
\sum_{l=1}^{2 K-1} h_{l}=\sqrt{2}
$$

Additional conditions:

$$
\begin{gathered}
\int s(x-n) s(x-m) d x=\delta_{m n} \\
\int x^{m} \sum_{l=0}^{2 K-1} g_{l} s(x-l) d x=0 \quad m=0,1, \cdots K-1 \\
g_{l}:=(-)^{\prime} h_{2 K-l-1}
\end{gathered}
$$

Conditions define Daubechies K scaling functions:

Ingrid Daubechies

Conditions that fix h_{l} :

- $s_{n}(x):=T^{n} s(x)=s(x-n)$ are orthonormal.
- $x^{m}=\sum_{n} c_{n} s_{n}(x)$ pointwise for $m \leq K$.
- $\sum_{l=1}^{2 K-1} h_{l}=\sqrt{2}$ necessary for existence of solution.
- These conditions determine h_{l} up to reflection: $h_{l} \rightarrow h_{l}^{\prime}=h_{2 k-1-I}$.

Weight coefficients h_{l} for different K values

h_{I}	$\mathrm{~K}=1$	$\mathrm{~K}=2$	$\mathrm{~K}=3$
h_{0}	$1 / \sqrt{2}$	$(1+\sqrt{3}) / 4 \sqrt{2}$	$(1+\sqrt{10}+\sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{1}	$1 / \sqrt{2}$	$(3+\sqrt{3}) / 4 \sqrt{2}$	$(5+\sqrt{10}+3 \sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{2}	0	$(3-\sqrt{3}) / 4 \sqrt{2}$	$(10-2 \sqrt{10}+2 \sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{3}	0	$(1-\sqrt{3}) / 4 \sqrt{2}$	$(10-2 \sqrt{10}-2 \sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{4}	0	0	$(5+\sqrt{10}-3 \sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$
h_{5}	0	0	$(1+\sqrt{10}-\sqrt{5+2 \sqrt{10}}) / 16 \sqrt{2}$

Basis construction $\left(L^{2}(\mathbb{R})\right)$

Rescale and translate fixed point, $s(x)$
$s_{n}^{k}(x):=D^{k} T^{n} s(x)=2^{k / 2} s\left(2^{k}\left(x-2^{-k} n\right)\right)$.
Support of $s_{n}^{k}(x)$ is $\left[2^{-k} n, 2^{-k}(n+2 K-1)\right]$
$\mathcal{S}_{k}:=$ resolution 2^{-k} subspace of $L^{2}(\mathbb{R}):$

$$
\begin{aligned}
\mathcal{S}_{k}:=\{f(x) \mid f(x)= & \left.\sum_{n=-\infty}^{\infty} c_{n} s_{n}^{k}(x), \quad \sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}<\infty\right\} \\
& \mathcal{S}_{k}:=D^{k} \mathcal{S}_{0}
\end{aligned}
$$

Renormalization group equation implies

$$
\begin{array}{cl}
\mathcal{S}_{k} \subset \mathcal{S}_{k+n} & n>0 \\
\mathcal{S}_{k+1}=\mathcal{S}_{k} \oplus \mathcal{W}_{k} & \mathcal{W}_{k} \neq\{\emptyset\}
\end{array}
$$

Multi-resolution decomposition of $L^{2}(\mathbb{R})$

$$
\mathcal{S}_{k+1}=\mathcal{S}_{k} \oplus \mathcal{W}_{k}
$$

Iterate

$$
\begin{aligned}
& L^{2}(\mathbb{R})=\mathcal{S}_{k} \oplus \mathcal{W}_{k} \oplus \mathcal{W}_{k+1} \oplus \mathcal{W}_{k+2} \oplus \mathcal{W}_{k+3} \oplus \cdots= \\
& \quad \cdots \oplus \mathcal{W}_{k-2} \oplus \mathcal{W}_{k-1} \oplus \mathcal{W}_{k} \oplus \mathcal{W}_{k+1} \oplus \mathcal{W}_{k+2} \oplus \cdots
\end{aligned}
$$

Wavelets $\left(\left\{w_{n}^{k}(x)\right\}\right.$ orthonormal basis for $\left.\mathcal{W}_{k}\right)$

$$
\begin{aligned}
& w(x):=D \sum_{l=0}^{2 K-1} g_{l} T^{\prime} s(x) \quad g_{I}=(-)^{\prime} h_{2 K-1-l} \\
& w_{n}^{k}(x):=D^{k} T^{n} w(x)=2^{k / 2} w\left(2^{k}\left(x-2^{-k} n\right)\right)
\end{aligned}
$$

Same support as $\left\{s_{n}^{k}(x)\right\}$

Comments

Orthonormal basis for $L^{2}(\mathbb{R})$:

$$
\left.\left\{s_{n}^{k}(x)\right\}_{n=-\infty}^{\infty}\right\} \cup\left\{w_{n}^{\prime}(x)\right\}_{n=-\infty, l \geq k}^{\infty}
$$

All basis functions constructed from a single function $s(x)$.
The condition

$$
\int x^{m} \sum_{l=0}^{2 K-1} g_{l} s(x-l)=0 \quad m=0,1, \cdots K
$$

that determines the h_{l} is equivalent to the requirement

$$
\int x^{m} w_{n}^{k}(x) d x=0 \quad \forall k, n \quad \text { and } \quad m=0,1, \cdots, K-1
$$

Local pointwise polynomial condition

Completeness implies

$$
f(x)=\sum_{n} c_{n} s_{n}^{k}(x)+\sum_{n, l \geq k} d_{n} w_{n}^{\prime}(x)
$$

For $f(x)=x^{m}, m<K$ all the $d_{n l}=0$ which means

$$
x^{m}=\sum_{n} c_{n} s_{n}^{k}(x) \quad m<K
$$

where for any x only a finite number of the $s_{n}^{k}(x)$ are non-zero.

This requires that both sides of the equation agree at every x

- This explains why JPEG works. All of coefficients d_{n}^{k} associated with structures that are smooth on scale 2^{-k} vanish, or are very small, resulting in an efficient representation of the data.
- The transformation relating \mathcal{S}_{k+n} and $\mathcal{S}_{k} \oplus \mathcal{W}_{k} \oplus \cdots \oplus \mathcal{W}_{k+n}$ is a real orthogonal transformations, called the wavelet transform, that can be performed very efficiently.
- The wavelet transformation can be used to recover an approximation to the original function.
- Basis allows natural resolution and volume truncations.

Weird stuff!

$$
1=\underbrace{\int s(x) d x}_{\text {setting scale }}=\underbrace{\int s^{2}(x) d x}_{\text {normalization }}
$$

- Locally finite sums of fractal functions can be differentiable. This means that a FINITE number of these functions with complex fractal boundaries fit together like a jigsaw puzzle!
- Under any magnification the functions do not look like straight lines, but they are differentiable!

Daubechies Wavelets

As K increases:

Support increases,

Smoothness increases,

Number of non-zero functions at a point increases

Translations and Dilations $-\phi_{\mathrm{j}, \mathrm{l}}(\mathrm{x})$

Daubechies-2 Wavelets

Kernel, $K(x, y)$ of a scattering integral equation after wavelet transform

$$
F(x)=D(x)+\int K(x, y) F(y) d y
$$

Advantages of Daubechies wavelets

- Basis for $L^{2}(\mathbb{R})$.
- Basis functions have compact support.
- Infinite number of basis functions with support in any open set.
- Basis functions have limited (controllable) smoothness.
- $2^{k / 2} s_{n}^{k}(x)$ are locally finite partitions of unity.
- Efficient at representing problems with multiple scales.
- In many applications basis functions do not have to be computed.

To do numerical analysis with fractal functions you need to be able to:

- Evaluate basis functions.
- Evaluate expansion coefficients.
- Integrals of polynomials \times basis functions.
- Implement boundary conditions.
- Integrate products of basis functions \times polynomials.
- Evaluate derivatives of basis functions.
- Evaluate products of basis functions, derivatives of basis functions and polynomials.
- Evaluate singular integrals.
- Evaluate integrals with moving singularities.

Standard methods cannot be used to satisfy these requirements.

The renormalization group equation is a new computational tool!

The renormalization group equation and the scale fixing condition provide a means to solve the problems on the previous slide!

Computation of fractal basis functions?

Approximation by iteration.
Pick any function $f_{1}(x)$ satisfying $\int f_{1}(x) d x=1$.

$$
\begin{gathered}
f_{n}(x)=\sum_{l} h_{l} D T^{\prime} f_{n-1}(x) \\
s(x)=\lim _{n \rightarrow \infty} f_{n}(x)
\end{gathered}
$$

Exact calculation at dyadic rationals, use the renormalization group equation at dyadic rational points:

$$
\begin{array}{cl}
s(n)=\sqrt{2} \sum_{l} h_{l} s(2 n-l) \quad \sum_{n} s(n)=1 & n=1,2, \cdots 2 K-2 \\
s(r / 2)=\sqrt{2} \sum_{l} h_{l} s(r-l) & r=\frac{m}{2^{k}}
\end{array}
$$

Calculations of integrals use the renormalization group equation and the scale fixing condition.

All moments of $s_{n}^{k}(x)$ and $w_{n}^{\prime}(x)$ can be computed exactly.

$$
\begin{aligned}
& <x^{m}>_{s_{n}^{k}}:=\int x^{m} s_{n}^{k}(x) d x=\left(\frac{1}{2}\right)^{\frac{3 n m}{2}} \int(x+n)^{m} s(x) d x \\
& <x^{m}>_{w_{n}^{k}}:=\int x^{m} w_{n}^{k}(x) d x=\left(\frac{1}{2}\right)^{\frac{3 n m}{2}} \int(x+n)^{m} w(x) d x
\end{aligned}
$$

Calculating moments:

$$
\begin{aligned}
<x^{m}>_{s}= & \int s(x) x^{m} d x \quad<x^{m}>_{w}=\int w(x) x^{m} d x . \\
& <x^{0}>_{s}=\left(x^{0}, s\right)=\int d x s(x)=1
\end{aligned}
$$

Using the renormalization group equation:

$$
\begin{gathered}
\left\langle x^{m}>_{s}=\left(x^{m}, s\right)=\left(D^{-1} x^{m}, D^{-1} s\right)\right. \\
=\frac{1}{\sqrt{2}} \frac{1}{2^{m}} \sum_{l} h_{l}\left(x^{m}, T^{\prime} s\right) \\
=\frac{1}{\sqrt{2}} \frac{1}{2^{m}} \sum_{l} h_{l}\left((x+l)^{m}, s\right) \\
=\frac{1}{\sqrt{2}} \frac{1}{2^{m}} \sum_{l} h_{l} \sum_{k=0}^{m} \frac{m!}{k!(m-k)!} l^{m-k}<x^{k}>_{s} .
\end{gathered}
$$

Using $\sum_{l} h_{l}=\sqrt{2}$, and moving the $k=m$ term to the left side of the above equation gives the recursion relation:

$$
<x^{m}>_{s}=\frac{1}{2^{m}-1} \frac{1}{\sqrt{2}} \sum_{k=0}^{m-1} \frac{m!}{k!(m-k)!}\left(\sum_{l=1}^{2 K-1} h_{l} I^{m-k}\right)<x^{k}>_{s}
$$

Note $k<m$

$$
<x>_{s}:=\int x s(x) d x=\frac{1}{\sqrt{2}} \sum_{l=0}^{2 K-1} I h_{l} .
$$

With this definition:

$$
\int(a+b x) s(x) d x=a+b<x>_{s}
$$

Boundary conditions:

$$
<x^{m}>_{s_{n}: 0}=\int_{0}^{\infty} x^{m} s_{n}(x) d x
$$

The renormalization group equation relates these endpoint partial moments to ordinary moments.

The computation reduces to linear algebra.

Integrating functions with small support

One-point quadrature
Property of moments

$$
\begin{gathered}
\int x^{2} s(x) d x=\left(\int x s(x) d x\right)^{2} \\
<x^{2}>_{s}=<x>_{s}^{2} \\
\int p(x) s(x) d x=\int\left(a+b x+c x^{2}\right) s(x) d x= \\
a+b\langle x\rangle_{s}+c\langle x\rangle_{s}^{2}=p\left(\langle x\rangle_{s}\right) \\
\langle x\rangle_{s}=\frac{1}{\sqrt{2}} \sum_{l=0}^{2 K-1} I h_{l} .
\end{gathered}
$$

General methods - integrals of products of basis functions:
Step 1: Increasing resolution 2^{-k} :

$$
s_{n}^{k}(x)=\sum_{l=0}^{2 K-1} h_{l} s_{2 n+l}^{k+1}(x)
$$

Step 2: Replacing wavelets by scaling functions:

$$
w_{n}^{k}(x)=\sum_{l=0}^{2 K-1} g_{l} s_{2 n+l}^{k+1}(x)
$$

Step 3: Changing scale: $2^{-k} \rightarrow 0$

$$
\int s_{n_{1}}^{k}(x) \cdots s_{n_{m}}^{k}(x) d x=2^{\frac{k m}{2}-k} \int s_{n_{1}}^{0}(x) \cdots s_{n_{m}}^{0}(x) d x
$$

Calculating the $k=0$ integrals
Step 4:Use the renormalization group equation

$$
\Gamma_{n_{1}, \cdots, n_{k}}:=\int s_{n_{1}}^{0}(x) \cdots s_{n_{m}}^{0}(x) d x \quad \text { use } n_{1}=0
$$

Homogeneous equation (RG equation):

$$
\Gamma_{n_{1}, \cdots n_{m}}=\sum 2^{m / 2-1} h_{l_{1}} \cdots h_{l_{m}} \Gamma_{2 n_{1}+l_{1}, \cdots, 2 n_{m}+l_{m}}
$$

Step 5: Inhomogeneous equation: use $\sum s_{n}(x)=1$:

$$
\sum_{n_{1}} \Gamma_{n_{1}, \cdots n_{m}}=\Gamma_{n_{2}, \cdots n_{m}}
$$

Step 6: Solve the finite linear system

Integrating products of scaling functions and polynomials
Homogeneous equations (RG equation)

$$
\begin{gathered}
I_{n_{1} \cdots n_{k}}^{m}:=\int x^{m} s_{n_{1}}(x) \cdots s_{n_{k}}(x) d x= \\
2^{-\frac{2 m+k}{2}} \sum h_{l_{1}} \cdots h_{l_{k}} \int x^{m} s_{2 n_{1}+l_{1}}(x) \cdots s_{2 n_{k}+l_{k}}(x) d x= \\
2^{-m-k / 2} \sum h_{l_{1}} \cdots h_{l_{k}} I_{2 n_{1}+l_{1}, \cdots 2 n_{k}+l_{k}}^{m}
\end{gathered}
$$

Inhomogeneous equations

$$
\sum_{n_{1}} I_{n_{1} \cdots n_{k}}^{m}=I_{n_{2} \cdots n_{k}}^{m}
$$

Solve using linear algebra and recursion on k.

A necessary condition for the solution of the RG equation to have k derivatives can be obtained by differentiating the RG equation k times, which gives

$$
\frac{d^{k} s(x)}{d x^{k}}(x)=\sqrt{2} 2^{k} \sum_{l} h_{l} \frac{d^{k} s(x)}{d x^{k}}(2 x-l)
$$

Letting $x=m$ and $n=2 m-/$ gives the eigenvalue equation

$$
\begin{aligned}
& \frac{d^{k} s}{d x^{k}}(m)=\sqrt{22^{k}} \sum_{n} h_{2 m-n} \frac{d^{k} s}{d x^{k}}(n) \\
& \sum_{n} H_{m n} \frac{d^{k} s}{d x^{k}}(n)=2^{-k-\frac{1}{2}} \frac{d^{k} s}{d x^{k}}(m)
\end{aligned}
$$

The matrix is $(2 K-2) \times(2 K-2)$ which limits the number of eigenvalues (again - calculus replaced by linear algebra).

Derivatives of basis functions

$$
\frac{d s(x)}{d x}=2 \sum h_{l} D T^{\prime} \frac{d s(x)}{d x}
$$

Replaces renormalization group equation

Differentiate

$$
x=<x>_{s_{n}}+\sum_{n} n s_{n}(x)
$$

to get a normalization condition

$$
1=\sum_{n} n \frac{d s_{n}(x)}{d x}
$$

Example: Integral of product of derivatives $(K=3)$
0 unless the support of s_{m} and s_{n} overlap

$$
D_{m n}=D_{m-n, 0}=\int \frac{d s_{m}(x)}{d x} \frac{d s_{n}(x)}{d x} d x
$$

non-zero $D_{m, 0}$ have exact rational values

$$
\begin{gathered}
D_{40}=D_{-40}=-3 / 560 \\
D_{30}=D_{-30}=-4 / 35 \\
D_{20}=D_{-20}=92 / 105 \\
D_{10}=D_{-10}=-356 / 105 \\
D_{00}=295 / 56
\end{gathered}
$$

Singular integrals

$$
S_{n}^{+}:=\int \frac{s_{n}(x) d x}{x+i 0^{+}}
$$

Renormalization group equation

$$
S_{n}^{+}:=\sqrt{2} \sum_{l} h_{l} S_{2 n+l}^{+}
$$

Treatment of singularity (partition of unity)

$$
-i \pi=\sum_{n} \int_{-a}^{a} \frac{d x s_{n}(x)}{x+i 0^{+}}=\sum_{n} S_{n: a}^{+}
$$

RG equation couples integrals over $x=0$ to integrals with support far from $x=0$. The integrals far from the singularity can be approximated in terms of moments. Rigorous error bounds can be computed. The evaluation of the integrals reduce to algebra.

$$
\begin{aligned}
S_{n: a}^{+}= & \int_{-a}^{a} \frac{s_{n}(x) d x}{x+i 0^{+}}=\frac{1}{n} \int_{-a-n}^{a-n} \frac{s(x) d x}{1+x / n}= \\
& \frac{1}{n} \sum_{k=0}^{\infty}\left(\frac{-1}{n}\right)^{k} \int_{-a-n}^{a-n} x^{k} s(x) d x
\end{aligned}
$$

RG equation couples integrals over $x=0$ to integrals with support far from $x=0$. The integrals far from the singularity can be approximated in terms of moments. Rigorous error bounds can be computed. The evaluation of the integrals reduce to algebra.

$$
S_{n}^{+}=\int \frac{s_{n}(x) d x}{x+i 0^{+}} \quad n=-1,-2,-3,-4
$$

Table 2: Singular integrals $(K=3)$

S_{-1+}	$-0.1717835441734-\mathrm{i} 4.041140804162$
S_{-2+}	$-1.7516314066967+\mathrm{i} 1.212142562305$
S_{-3+}	$-0.3025942645356-\mathrm{i} 0.299291822651$
S_{-4+}	$-0.3076858066180-\mathrm{i} 0.013302589081$

Integrals with natural logs

$$
L(n):=\int_{0}^{\infty} s_{n}(x) \ln (x) d x
$$

The renormalization group equations gives

$$
L(n)=\frac{1}{\sqrt{2}}\left(\sum_{l} h_{l} L(2 n+l)-\ln (2)\right) .
$$

$L(n)$ for large \mathbf{n} can be expressed in terms of moments

$$
\begin{gathered}
L(n)=\int s_{n}(x) \ln (x) d x=\int s(y) \ln (n(1+y / n)) d y \\
=\ln (n)-\sum_{m=1}^{\infty} \frac{(-1)^{m}}{m} \frac{<x^{m}>_{s}}{n^{m}}
\end{gathered}
$$

Table 2: Log integrals

$K=2$		
$n=-2$	$\int s_{n}(x) \ln \|x\| d x$	0.456927033732831
$n=-1$	$\int s_{n}(x) \ln \|x\| d x$	-1.64215549088219
$K=3$		
$n=-4$	$\int s_{n}(x) \ln \|x\| d x$	1.15737952417967
$n=-3$	$\int s_{n}(x) \ln \|x\| d x$	0.750468355278047
$n=-2$	$\int s_{n}(x) \ln \|x\| d x$	0.315624303943019
$n=-1$	$\int s_{n}(x) \ln \|x\| d x$	-1.83646456399118

Autocorrelation function

$$
A(x):=\int s(x-y) s(y) d y
$$

Renormalization group equation for $A(x)$

$$
\begin{gathered}
A(x)=\sum_{m, n} h_{m} h_{n} A(2 x-m-n) \\
a_{l}=\frac{1}{\sqrt{2}} \sum_{n} h_{l-n} h_{n} \\
A(x)=\sum_{l=0}^{4 K-2} a_{l} D T^{l} A(x)
\end{gathered}
$$

Scale fixing for $\mathbf{A}(\mathrm{x})$

$$
\int A(x)=1
$$

Autocorrelation function $A(x)(K=3)$

Integrals with moving singularities

$$
J_{k-m-n}:=\int \frac{s_{m}(x) s_{n}(y) d x d y}{k-x-y+i 0^{+}}=\int \frac{A(x) d x}{k-m-n-x+i 0^{+}}
$$

Renormalization group equation for $A(x)$

$$
\begin{gathered}
J_{n}=\sqrt{2} \sum_{l} a_{l} J_{2 n-l} \\
1=\sum_{n} A(x+n) \\
i \pi=\sum_{n} \int_{-a}^{a} \frac{A(x+n) d x}{-x+i 0^{+}}=\sum_{n} J_{n: a}
\end{gathered}
$$

Applications (my interests)

- Solving singular integral equations for scattering and imaging.
- Renormalizing equations of quantum field theory.

Detemine how parameters of theory behave as a function of resolution and volume for fixed measured quantities. Looking for fixed point.

- Path integral representations of quantum field theory.

Replaces time evolution of system with an infinite number of degrees of freedom by an infinite dimensional integral. Important for quantum computing.

Conclusions

- Daubechies wavelets are a useful basis for problems involving multiple scales.
- Standard numerical methods do not work very well when applied to fractal functions.
- In most cases the standard numerical methods can be replaced by new methods based on the renormalization group equation.
- The calculations of derivatives and integrals are replaced by linear algebra.
- Basis provides control over resolution and volume while remaining efficient.

Local references:

Palle Jørgensen : Analysis and Probability Wavelets, Signals, Fractals

O. Bratelli and P. Jørgensen : Wavelets through a looking glass

Zhihua Zhang \& Palle Jørgensen Hermite-Wavelet Transforms of Multivariate Functions on $[0,1]$
Acta Applicandae Mathematicae 170,773(2020)

