
Wigner’s theorem

Wigner’s theorem shows that correspondences between states that preserve
all quantum probabilities are necessarily given by unitary or antiunitary op-
erators. These correspondences also preserve expectation values and ensemble
averages..

Theorem: Consider a correspondence between quantum states

|χ〉 → |χ′〉 (1)

that satisfies
|〈χ|ξ〉|2 = |〈χ′|ξ′〉|2 (2)

for all states |χ〉 and |ξ〉. Then it is possible to choose arbitrary phases in each
ray so the correspondence is linear or antilinear.

Proof: The proof follows the one in K. Gottfried, p. 226-228, Quantum
Mechanics, Volume 1 Fundamentals

Let {|φn〉} be an orthonormal basis and let {|φ′n〉} denote the corresponding
primed states.

The frist step is to show that {|φ′n〉} is also an orthonormal basis. Since
〈φm|φn〉 = δmn it follows from the conditions of the theorem that |〈φ′m|φ′n〉|2 =
|〈φm|φn〉|2 = δmn. Since 〈φ′m|φ′m〉 > 0 it follows that 〈φ′m|φ′n〉 = δmn. This
shows that the |φ′n〉 are orthonormal.

In addition to being orthonormal {|φ′n〉} is also a basis. To show this by
contradiction assumee that there is a vector |c′〉 6= 0| that is orthogonal to all
of the basis functions, |φ′n〉. Then it follows that 〈φn|c〉 = 〈φ′n|c′〉 = 0, which
implies |c〉 = 0, which by the assumption of the theorem also requires |c′〉 = 0
, contradicting the assumption that |c′〉 6= 0. This show that {|φ′n〉} is an
orthonormal basis.

The next step in the proof of Wigner’s theorem is to fix the arbitrary phases
of the {|φ′n〉}. To do this for each n 6= 1 define

|αn〉 = |φ1〉+ |φn〉. (3)

It follows that
|α′n〉 =

∑
m

|φ′m〉〈φ′m|α′n〉 (4)

Since |〈φ′m|α′n〉| = |〈φm|αn〉| there are only two non-zero terms in this expansion
and both coefficients are phases

|α′n〉 = eian |φ′1〉+ eibn |φ′n〉 (5)

which can be writen as

e−ian |α′n〉 = |φ′1〉+ ei(bn−an)|φ′n〉 (6)

For n 6= 1 we absorb these phases in the transformed vectors

|α′′n〉 = e−ian |α′n〉 (7)
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|φ′′n〉 = ei(bn−an)|φ′n〉 (8)

With these phase choices it follows that

|α′′n〉 = |φ′1〉+ |φ′′n〉 (9)

Next let |χ〉 be an arbitrary vector and use the completeness of the bases to
write

|χ〉 =
∑
m

cm|φm〉 (10)

|χ′〉 =
∑
m

c′m|φ′′m〉 (11)

By assumption
|cm|2 = |〈φm|χ〉|2 = |〈φ′′m|χ′〉|2 = |c′m|2 (12)

We also have
〈αn|χ〉 = 〈φ1|χ〉+ 〈φn|χ〉 = c1 + cn (13)

and from
〈α′′n|χ′〉 = 〈φ′1|χ′〉+ 〈φ′′n|χ′〉 = c′1 + c′′n (14)

The assumptions of the theorem imply

|c′1 + c′′n|2 = |〈α′′n|χ′〉|2 = |〈αn|χ〉|2 = |c1 + cn|2 (15)

Multiplying everything out

|c′1|2 + |c′n|2 + c′1c
′∗
n + c′nc

′∗
1 = |c1|2 + |cn|2 + c1c

∗
n + cnc

∗
1 (16)

The assumptions of the theorem imply that the first two terms on the right are
identical to the first two terms on the left so they cancel. What remains is

0 = c′1c
′∗
n + c′nc

′∗
1 − c1c∗n − cnc∗1 (17)

Multiply by c′n to get

0 = c′1|c′∗n |2 + (c′n)2c′∗1 − c1c∗nc′n − cnc∗1c′n (18)

which is a quadratic equation for c′n:

0 = (c′n)2 − c′n
(c1c

∗
n + cnc

∗
1)

c1′∗
+

c′1
c1′∗
|cn|2 (19)

The roots are
c′n = cn c′n =

c1
c∗1
c∗n (20)

We are still free to redefine the phase of |χ〉 so c1 = c∗1. With this change we
get the following two possibilitiees

|χ′〉 =
∑
m

cm|φ′m〉 (21)
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or
|χ′〉 =

∑
m

c∗m|φ′m〉 (22)

In the first case the correspondence is linear, while in the the second case it is
antilinear. Since the norm is preserved in both cases, it is unitary or antiunitary.

It is also true that if the correespondence is unitary or antuintary for one
vector, it must be unitary or antuintary for all vectors. To show this let

|χ′〉 =
∑

c∗n|φ′n〉 (23)

and
|ξ′〉 =

∑
dn|φ′n〉. (24)

Then
〈χ′|ξ′〉 =

∑
m

dmcm (25)

〈χ|ξ〉 =
∑
m

dmc
∗
m (26)

and
|〈χ′|ξ′〉|2 =

∑
mn

dmcmd
∗
nc
∗
n 6=

∑
mn

|dm|2|cn|2 = |〈χ|ξ〉|2 (27)

which contradicts the assumption of the theory. This completes the proof of
Wigner’s theorem.

To summarize what has been shown, note that if W represeents the corre-
spondence

W [|χ〉] = |χ′〉 (28)

then if {|φn〉} is a basis we can choose phases so

uW [|φn〉] = |φ′n〉′ (29)

and
W [

∑
m

cm|φm〉] =
∑
m

cm|φ′m〉 (30)

or
W [

∑
m

cm|φm〉] =
∑
m

c∗m|φ′m〉 (31)

Bargmann’s Theorem

Wigner’s theorem implies that a relativistically invariant quantum mechanics
is defined by a unitary representation of the component of the Poincaré group
connected to the identity. In general the group elements map rays to rays, so
there is some freedom available to define phases. In general there is no reason
the expect that the product of unitary representations of group elements has
the same phase at the unitary representation of the products of group elements

U(Λ2, a2)U(Λ1, a1) = eiφU(Λ2Λ1,Λ2a1 + a2). (32)
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The phases of these transformations can be eliminated by redefining the unitary
operators provided the Lie Algebra has no central charges and the group is
simply connected. For the Poincaré group there are no central charges, and
the group becomes simply connected if SO(3 : 1) is replaced by SL(2,C). The
group SL(2,C) is discussed in the next section.
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