
Unitary one parameter groups

Unitary one parameter groups are sets of unitary operators, U(λ), satisfying the
following three conditions:

U(λ1)U(λ2) = U(λ1 + λ2) (1)

U(0) = I (2)

U†(λ1) = U−1(λ1) = U(−λ1) (3)

Theorem: If U(λ) is a unitary one parameter group then

U(λ) = e−iλG (4)

where G = G† and G is independent of λ.
Proof:

0 = d

dλ
I = d

dλ
(U(λ)U†(λ)) = U ′(λ)U†(λ) + U(λ)U†′(λ) (5)

where
U ′(λ) := d

dλ
U(λ). (6)

It follows that

U ′(λ)U†(λ) = −U(λ)U†′(λ) = −(U ′(λ)U(λ))†. (7)

Define
G(λ) = iU ′(λ)U†(λ) (8)

then (7) means
G(λ) = G†(λ) (9)

To show that G(Λ) is independent of λ let λ = λ1 + c where c is a constant.
Then

d

dλ
= dλ1

dλ

d

dλ1
= 1 × d

dλ1
= d

dλ1
(10)

G(λ) = iU ′(λ))U†(λ) = i( d

dλ1
U(λ1 + c))U†(λ1 + c) =

i( d

dλ1
U(λ1)U(c)U†(λ1)U†(c) = i( d

dλ1
U(λ1)U†(−c+ λ1 + c) =

i( d

dλ1
U(λ1)U†λ1) = G(λ1) (11)

which shows that G is independent of λ.
It follows that

U ′(λ) = −iGU(λ) U(0) = I (12)
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which can be integrated to get

U(Λ) := e−iGλ := I +
∞∑

n=1

(−iGλ)n

n!
(13)

which converges on eigenstates of G with finite eigenvalues.

Rotations about a fixed axis

In a quantum theory we expect that changes of coordinates by rotating about
a fixed axis will not change quantum probabilities. A theorem due to Wigner
(see Gottfied or Weinberg for an elementary proof) implies that transformations
that preserve all probabilities must be either unitary or antiunitary.

The unitary or antiunitary, ⟨Aψ|Aϕ⟩ = ⟨ϕ|ψ⟩, operator representing a rota-
tions through an angle θ about a fixed axis (z axis for example) should form a
unitary one parameter group, i.e.

U(θ2)U(θ1) = U(θ1 + θ2) (14)

Exercise: Show that that if U(λ1 + λ2) = U(λ1)U(λ2) then U(λ) cannot be
antiunitary.

Technical Comment: It is also possible that the products above could
also include a phase that depends on (θ1 + θ2). This is discussed in detail in
Weinberg - in many cases the phase can be transformed away by redefining the
operators. I will discuss this later; it only becomes non trivial when discussing
non-relativistic boosts to coordinate systems moving with constant velocity.

Equation (14) means that U(θ) = e−iθGz where Gz = G†
z is independent of

θ. Gz is called the infinitesimal generator of rotations about the z axis.
In order to discuss rotations let V be a fixed vector in the x − y plane. It

can be expanded in a basis

V = Vxx̂ + Vyŷ. (15)

If we use a new set of basis vectors related to the original basis by a rotation by
an angle θ about the ẑ axis the new basis vectors can be expressed in terms of
the original ones as

x̂′ = cos(θ)x̂ + sin(θ)ŷ (16)
ŷ′ = cos(θ)ŷ − sin(θ)x̂. (17)

The vector V can expressed in the new basis as

V = V ′
xx̂′ + V ′

y ŷ′. (18)

Exercise: Use (15) - (18) to show that the components of V in these two
different coordinate systems are related by V ′

x

V ′
y

V ′
z

 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 Vx
Vy
Vz

 . (19)
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This is the passive point of view. Instead of keeping the vector fixed and rotating
the basis, we could keep the basis fixed and physically rotate the vector. This
is called the active view. This will be used in what follows. In this case the
components of the rotated vector in the original basis is given by the inverse of
the above rotation V ′

x

V ′
y

V ′
z

 =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 Vx
Vy
Vz

 . (20)

We still expect quantum probabilities to be conserved with respect to active ro-
tations. Finally note that in order to preserve the group representation property
for vector operators

U(R)VU†(R) = RtV = VR

so matrix multiplication is in the same order as multiplication by the unitary
rotation operators:

V′ = U(R2R1)VU(R2R1)† = U(R2)U(R1)VU†(R1)U†(R2) =

Rt
1U(R2)VU†(R2) = Rt

1R
t
2V = (R2R1)tV = V R2R1. (21)

If V′ represents components of a rotated vector operator on the Hilbert space
(like a coordinate or momentum operator) then in terms of the generator Gz

V′ = U(θ)VU†(θ) =

e−iGzθVeiGzθ = RtV =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 Vx
Vy
Vz

 (22)

Exercise: Differentiate equation (22) with respect to θ and then set θ to zero
to show:

−[iGz,V] =

 0 1 0
−1 0 0
0 0 0

 Vx
Vy
Vz

 . (23)

Component by component this gives

[Gz, Vx] = iVy, [Gz, Vx] = −iVx, [Gz, Vz] = 0 (24)

where Gz is the infinitesimal generator of rotations about the z axis.
This can be repeated for rotations about the x̂ and ŷ axes. The results are

for rotations about the x̂ axis

[Gx, Vx] = 0 [Gx, Vy] = iVz, [Gx, Vz] = −iVy, (25)

and for rotations about ŷ axis

[Gy, Vx] = −iVz, [Gy, Vy] = 0 [Gy, Vx] = iVx, (26)
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These relations can be summarized by

[Gi, Vj ] = i

3∑
k=1

ϵijkVk (27)

where (i, j, k) represents (x, y, z), (y, z, x) or (z, x, y) and ϵijk is completely an-
tisymmetric and ϵ123 = ϵxyz1.

The commutation relations characterize any operator whose components
transform like a vector when the coordinate system is rotated.

SU(2)

Vectors can be represented by 2 × 2 traceless Hermitian matrices

V = (Vx, Vy, Vz) = (V1, V2, V3) (28)

V = V · σσσ = Vxσx + Vyσy + Vzσz =
(

V3, V1 − iV2
V1 + iV2,−V3

)
Vi = 1

2
Tr(σiV )

(29)
Since

det(V ) = −V 2
x − V 2

y − V 2
z = −V2 (30)

transformations of the form
V ′ = WVW † (31)

where W is a unitary 2× 2 matrix with determinant 1 preserve the Hermiticity,
trace and determinant. These are called SU(2) matrices. For V ′

i =
∑3

j=1 RijVj
where Rij is a rotation matrix

V ′ =
3∑

i,j=1
σiRijVj = (W

3∑
j=1

VjσjW
†). (32)

Multiply both sides by σl and take traces to get

V ′
l = RljVj =

∑
j

1
2

Tr(σlWσjW
†)Vj (33)

Differentiating (33) with respect to Vj gives an expression for the SO(3) matrix
R in terms of the SU(2) matrices W :

Rlj = 1
2

Tr(σlWσjW
†) (34)

Replacing W by −W does not change the result. This gives a 2 to 1 corre-
spondence between SU(2) matrices ±W and real orthogonal matrices Rij with
determinant 1 (rotations).
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Exercise: Show that a general SU(2) matrix can be expressed in the form

W = e−i 1
2θθθ·σσσ = cos(θ

2
)I − iθ̂θθ sin(θ

2
) . (35)

Exercise: Show that a general SU(2) matrix can be expressed in the form

W = e0I + ie · σσσ e2
0 + e · e = 1. (36)

Exercise: Use (33) to show that for

W = e−i 1
2 θσx (37)

that
Rlj = 1

2
Tr(σlWσjW

†) (38)

gives R corresponding to a rotation (20) about the ẑ axis.
The SU(2) matrices represent spin 1

2 rotations.

Angular momentum

Exercise: Show that if a Hamiltonian is rotationally invariant, U(θ)HU†(θ) =
H then [G,H] = 0 and G is a conserved quantity.

This means that for a rotationally invariant Hamiltonian G := (Gx, Gy, Gz)
is conserved. This conserved quantity is identified with the angular momentum.
Classically we expect the angular momentum operator to be a vector operator.
Replacing Vi by Gi in (27) gives

[Gi, Gk] = i

3∑
k=1

ϵijkGk (39)

Note that since U(θ) = e−iGθ the quantity Gθ must be dimensionless.
Since angles are dimensionless. Since angular momentum has units (coordi-
nate)(momentum) the angular momentum operator J = ℏG where ℏ has units
of angular momentum. Then

[Ji, Jk] = iℏ
3∑

k=1

ϵijkJk (40)

In what follows I will choose units where ℏ = 1. In these units J = G and

[Ji, Jk] = i

3∑
k=1

ϵijkJk (41)

We expect that the length of J is invariant with respect to rotations. The
length squared or the angular momentum is defined by

J2 := J · J = JxJx + JyJy + JzJz. (42)
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Exercise: Show that (35) implies

[Ji,J2] = 0 (43)

which gives the expected property that the length of J remains invariant with
respect to rotations.
Exercise: Show that J2 = (J2)† follows from (41) and (42).

Note that while the individual components of J do not commute, any com-
ponent of J commutes with J2. Since these are commuting Hermitian operators
it is possible to find simultaneous eigenstates, |λ, µ⟩, of each one:

Jz|η, µ⟩ = µ|η, µ⟩ (44)

J2|η, µ⟩ = η|η, µ⟩ (45)
It is useful to define

J± = Jx ± iJy (46)
Exercise: Show that the commutation relations (41) imply

[Jz, J±] = ±J± (47)

It follows from (47) that

JzJ±|η, µ⟩ = J±Jz|η, µ⟩ ± J±|η, µ⟩ = (µ± 1)J±|η, µ⟩ (48)

This means that if |η, µ⟩ is an eigenstate of Jz with eigenvalue µ then J±|η, µ⟩
is zero or and eigenstate of Jz with eigenvalue µ ± 1. Because of this J± are
called raising and lowering operators.
Exercise: Show that

J∓J± = J2 − JzJz ∓ Jz (49)
which gives

J2 = 1
2

(J+J− + J−J+) + JzJz (50)

Assuming that the states |η, µ⟩ are normalized to unity

1 = ∥|η, µ⟩∥2 = ⟨η, µ|η, µ⟩ (51)

then
∥J±|η, µ⟩∥2 = ⟨η, µ|J∓J±η, µ⟩ = ⟨η, µ|J2 − J2

z ∓ Jzη, µ⟩ =
(η − µ2 ∓ µ)⟨η, µ|η, µ⟩(η − µ2 ∓ µ′). (52)

Since this is the norm of a Hilbert space vector it must be non-negative

(η − µ2 ∓ µ) = (η − µ(µ± 1) ≥ 0. (53)

From this expression it is clear that as ±µ increases for fixed η it eventually
becomes negative. This means that there is a highest µ = µmax and lowest
µ = µmin that makes this vanish:

J+|η, µmax⟩ = J−|η, µmin⟩ = 0. (54)
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This gives
η = µmax(µmax + 1) = µmin(µmin − 1). (55)

Solving the quadratic equation for µmax in terms of µmin gives

µ2
max + µmax − µmin(µmin − 1) = 0 (56)

µmax = 1
2

(−1 ±
√

1 + 4µ2
min − 4µmin) = 1

2
(−1 ±

√
(1 − 2µmin)2) ={

−µmin

µmin − 1 (57)

The lower root has µmin = µmax + 1 which violates µmax ≥ µmin. Therefore
we must have

µmax = −µmin (58)

and
η = µmax(µmax + 1). (59)

Since µmax − µmin = 2µmax must be an integer, it follows that the possible
values of µmax are µmax = n

2 .
It conventional to define j := µmax so η = j(j + 1). In this notation

|j, µ⟩ := |η, µ⟩ (60)

J2|j, µ⟩ = j(j + 1)|j, µ⟩ (61)

where η = j(j + 1) and −j ≤ µ ≤ j.
Since J± increases or decreases µ it follows that

J±|j, µ⟩ = |j, µ± 1⟩N± (62)

where N± is a normalization constant. To compute N± use (49) to get

|N±|2 = ⟨j, µ|J−∓J±|j, µ⟩ =

⟨j, µ|J2 − J2
z ∓ Jz|j, µ⟩ = j(j + 1) − µ(µ± 1) = (j ∓ µ)(j ± µ+ 1). (63)

This determines the normalization constant up to a phase. Choosing the nor-
malization constant to be real and positive gives

N± =
√
j(j + 1) − µ(µ± 1) =

√
(j ∓ µ)(j ± µ+ 1) (64)

and the relations

J±|j, µ⟩ = |j, µ± 1⟩
√
j(j + 1) − µ(µ± 1) = |j, µ± 1⟩

√
(j ∓ µ)(j ± µ+ 1) .

(65)
It follows that all states for fixed j and be calculated given |j, j⟩ or |j,−j⟩. The
state |j, j⟩ is called the highest weight state.
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Schwinger method - finite dimensional representations of the
rotation group

Since
[J2,J] = 0, (66)

J2e−in̂·Jθ|j, µ⟩ = e−in̂·JθJ2|j, µ⟩ = j(j + 1)e−in̂·Jθ|j, µ⟩ (67)

which means that e−in̂·Jθ|j, µ⟩ is also an eigenstate of J2 with eigenvalue j(j+1).
It follows that

e−iθθθ·J|j, µ⟩ =
j∑

ν=−j

|j, ν⟩⟨j, ν|e−iθθθ·J|j, µ⟩ :=
j∑

ν=−j

|j, ν⟩Dj
νµ(R(θθθ)) (68)

where
Dj

νµ(R(θθθ)) := ⟨j, ν|e−iθθθ·J|j, µ⟩ (69)

is a 2j + 1 dimensional matrix representation of the rotation group. Here R(θθθ)
is a SU(2) matrix representing a rotation by an angle θ about the θ̂θθ axis. It is
normally referred to as a Wigner D-matrix. This means

j∑
α=−j

Dj
µα(R1)Dj

αν(R2) = Dj
µν(R1R2) (70)

Dj
µν(R−1) = (Dj

νµ(R))∗ (71)

Dj
µν(I) = δµν . (72)

In what follows a method of Schwinger is used to compute D(R). Start by
defining

n± := j ± µ (73)

j = 1
2

(n+ + n−) µ = 1
2

(n+ − n−). (74)

Since there is a 1-1 correspondence between n+, n− and j, µ for this application
it is useful to label the eigenstates of J2 and Jz using n+, n− instead of j, µ:

|n+, n−⟩ := |j, µ⟩. (75)

It follows from (65) and (73) that

J+|n+, n−⟩ =
√

(n+ + 1)n−|n+ + 1, n− − 1⟩ (76)

J−|n+, n−⟩ =
√
n+(n− + 1)|n+ − 1, n− + 1⟩. (77)

Define non-Hermitian operators a± by

a±|0, 0⟩ = 0 (78)

a+|n+, n−⟩ = √
n+|n+ − 1, n−⟩ (79)
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a†+|n+, n−⟩ =
√
n+ + 1|n+ + 1, n−⟩ (80)

a−|n+, n−⟩ = √
n−|n+, n− − 1⟩ (81)

a†−|n+, n−⟩ =
√
n− + 1|n+, n− + 1⟩. (82)

Exercise: Show
[a+, a

†
+] = [a−, a†−] = 1 (83)

[a+, a
†
−] = [a−, a†+] = [a+, a−] = [a†−, a

†
+] = 0 (84)

Exercise: Show
a†±a±|n+, n−⟩ = n±|n+, n−⟩ (85)

These operators can be used to represent Jz and J± using (74,76-77):

J± = a†±a∓ (86)

Jz = 1
2

(a†+a+ − a†−a−) = 1
2

(a†+, a
†
−)

(
1 0
0 −1

)(
a+
a−

)
(87)

It follows from (46) that
Jx = 1

2
(J+ + J−) (88)

Jy = i

2
(J− − J+) (89)

Exercise: Show

Jx = 1
2

(a†+a− + a†−a+) = 1
2

(a†+, a
†
−)

(
0 1
1 0

)(
a+
a−

)
(90)

Jy = i

2
(a†−a+ − a†+a−) = 1

2
(a†+, a

†
−)

(
0 −i
i 0

)(
a+
a−

)
(91)

It is useful to use a matrix representation

a :=
(
a+
a−

)
a†

(
a+, a−

)
(92)

With this notation equations (87)-(91)can be expressed as

J = 1
2
a†σσσa (93)

and
U(R(θθθ)) = e−iθθθ·J = e−

i
2a

†θ̂θθ·σσσaθ (94)

This can be used to calculate

Di
µν(R(θθθ) = ⟨n′+n′−|e−

i
2a

†θ̂θθ·σσσaθ|n+n−⟩ =

⟨0, 0|
a
n′

+
+√
n′+!

a
n′
−

−√
n′−!

e−
i
2a

†θ̂θθ·σσσaθ (a†+)n+√
n+!

(a†−)n−√
n−!

|0, 0⟩ =
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⟨0, 0|
a
n′

+
+√
n′+!

a
n′
−

−√
n′−!

(
e−

i
2a

†θ̂θθ·σσσaθa†+e
i
2a

†θ̂θθ·σσσaθ
)n+√

n+!
×(

e−
i
2a

†θ̂θθ·σσσaθa†−e
i
2a

†θ̂θθ·σσσaθ
)n−√

n−!
× e−

i
2a

†θ̂θθ·σσσaθ|0, 0⟩︸ ︷︷ ︸
|0,0⟩

. (95)

In order to compute
e−

i
2a

†θ̂θθ·σσσaθa†±e
i
2a

†θ̂θθ·σσσaθ (96)

note that for general non commuting operators A and B if we define

X(λ) := eλABe−λA (97)

it follows that
d

dλ
X(λ) = [A,X(λ)] (98)

and by mathematical induction

dn

dλn
X(λ) = [A[· · · [A,X(λ)] · · · ]︸ ︷︷ ︸

n times

. (99)

Using the definition of the exponential (13) of an operator gives

X(λ) = B +
∞∑

n=1
[A[· · · [A,B] · · · ]︸ ︷︷ ︸

n times

λn

n!
(100)

Setting λ = 1 gives

eABe−A = B + 1
1!

[A,B] 1
2!

[A, [A,B]] + 1
3!

[A, [A, [A,B]]] · · · . (101)

We use this to evaluate

e−
i
2a

†θ̂θθ·σσσaθa†±e
i
2a

†θ̂θθ·σσσaθ =

a†± −
∑
jl

iθ

2
[a†j(θ̂θθ · σσσ)jkak, a†±]+

θ2

222!
∑

([a†l (θ̂θθ · σσσ)lmam, [a†k(θ̂θθ · σσσ)kjaj , a†±]] + · · · =

a†± −
∑
i

iθ

2
a†i (θ̂θθ ·σσσ)i± + 1

2!
∑
i

(− iθ
2

)2a†i (θ̂θθ ·σσσ)2
i± + 1

3!
∑
i

(− iθ
2

)3a†i (θ̂θθ ·σσσ)3
i± + · · ·

(102)
Since

(θ̂θθ · σσσ)2 =
∑
ij

θ̂θθiθ̂θθjσiσj =
∑
ij

θ̂θθiθ̂θθj(δij + i
∑
l

ϵijkσk) =
∑
i

θ̂θθiθ̂θθi = 1 (103)
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(102) can be summed explicitly

e−
i
2a

†θ̂θθ·σσσaθa†±e
i
2a

†θ̂θθ·σσσaθ =

cos(θ
2

)a†± − i
∑
j=±

sin(θ
2

)a†j(θ̂θθ · σσσ)j± =:

∑
k=±

a†kRk± = a†+R+± + a†−R−± (104)

where
Rij = cos(θ

2
)δij − i sin(θ

2
)(θ̂θθ · σσσ)ij (105)

are elements of a SU(2) matrix R. The binomial theorem gives

(a†+R+± + a†−R−±)n± =
n±∑
k=0

n±!
k!(n± − k)!

Rk
+±R

n±−k
−± (a†+)k(a†−)n±−k. (106)

Using (106) in (95) gives

Di
µν(R(θθθ) = ⟨n′+n′−|e−

i
2a

†θ̂θθ·σσσaθ|n+n−⟩ =

⟨0, 0|
a
n′

+
+√
n′+!

a
n′
−

−√
n′−!

∑n+
k=0

n+!
k!(n+−k)!R

k
++R

n+−k
−+ (a†+)k(a†−)n+−k√
n+!

×

∑n−
l=0

n−!
l!(n−−l)!R

l
+−R

n−−l
−− (a†+)l(a†−)n±−l√
n−!

|0, 0⟩ = (107)

n−∑
l=0

n+∑
k=0

1√
n′+!

1√
n′−!

n+!n−!
k!l!(n+ − k)!(ni − l)!

1√
n+!

√
n−!

×Rk
++R

n+−k
−+ Rl

+−R
n−−l
−− ⟨0, 0|an

′
+

+ a
n′
−

− (a†+)l+k(a†−)n++n−−k−l︸ ︷︷ ︸
n′

+!n−l!δn′
+,l+kδn′

,n+n−−l−k

=

n−∑
l=0

n+∑
k=0

√
n+!′n−!′n+!n−!

k!l!(n+ − k)!(n− − l)!
Rk

++R
n+−k
−+ Rl

+−R
n−−l
−− δn′

+,l+kδn′
,n+n−−l−k.

(108)
Since

n′+ = j + µ = l + k n′
− = j − µ = 2j − l − k n+ = j + ν n− = j − ν

(109)
it follows that l = j + µ− k and (108) becomes

Di
µν(R(θθθ) =
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j+ν∑
k=0

√
(j + µ)!(j − µ)!(j + ν)!(j − ν)!

k!(j + µ− k)!(j + ν − k)!(k − ν − µ)!
Rk

++R
j+ν−k
−+ Rj+µ−k

+− Rk−µ−ν
−− . (110)

Note that this is a homogeneous polynomial of degree 2j in the matrix elements
of R with real coefficients. Since

R++ = R∗
++ R−− = R∗

−− R+− = R∗
−+ (111)

(Di
µν(R))† = (Di

µν(R†)) (112)

Group integration

If we consider
Dj

µν(R) (113)

and average this quantity over all possible SU(2) rotations with equal weight
the result will be invariant under rotations. Since any SU(2) matrix can be
expressed as R = R′R0 where R0 is any fixed SU(2) matrix, averaging over R
or R’ will give the same result∫

Dj
µν(R)dR =

∫
Dj

µν(R′R0)dR =

∫
Dj

µν(R′R0)dR′ =
∫
Dj

µα(R′)dR′Dj
α,ν(R0) (114)

which is satisfied if
Dj

µα(R′) = 0 or Dj
α,ν(R0) = 1. (115)

This means ∫
Dj

µν(R)dR = Cδj0δµ0δν0 (116)

where C is a normalization constant. dR can be defined so the constant is 1.
For R = e−

i
2θθθ·σσσ,

θθθ = θ(sin(χ) cos(ϕ), sin(χ) sin(ϕ), cos(χ)) (117)

and the normalized Haar measure, dR is

dR = dθ sin(χ)dχdϕ
32π2 (118)

where (χ, ϕ) are the polar angles on the surface of the unit sphere, representing
the axis of rotation, and the angle of rotation and the polar angle ϕ can go
from 0 to 4π to cover all angles of rotation in SU(2) (note that a rotation by
2π changes the sign. With this choice of normalization∫

Dj
µν(R)dR = δj0δµ0δν0 . (119)
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What this equation implies is that there are no non-trivial rotationally in-
variant subspaces on the subspace spanned by the |j, µ⟩:

|ψ⟩ =
j∑

µ=−j

cµ|j, µ⟩. (120)

Because of this Dj
µν(R) is called an 2j + 1 dimensional unitary irreducible rep-

resentation of SU(2).

Adding angular momentum

Let Ja and Jb be angular momentum operators for two independent systems.
They satisfy

[Jai, Jaj ] = i

3∑
k=1

ϵijkJak [Jbi, Jbj ] = i

3∑
k=1

ϵijkJbk [Jai, Jbj ] = 0. (121)

Define the total angular momentum operator:

Jab = Ja + Jb (122)

Exercise: Show that

[Jabi, Jabj ] = i

3∑
k=1

ϵijkJabk (123)

follows from (121). This means that it is possible to find simultaneous eigen-
states of J2

ab and Jabz, |jab, µab⟩. These states can be expressed as linear com-
binations of the eigenstates of J2

a, Jaz, J2
b and Jbz:

|jab, µab⟩ =
ja∑

µa=−ja

jb∑
µb=−jb

|ja, µa⟩ ⊗ |jb, µb⟩Cjabja,jb
µab,µa,µb

. (124)

The coefficients Cjabja,jb
µan,µa,µb

are called Clebsch Gordan coefficients. This expres-
sion only defines them up to phase. We will define a commonly used phase
convention in what follows.

By definition
J2
ab|jab, µab⟩ = jab(jab + 1)|jab, µab⟩ (125)

Jabz|jab, µab⟩ = µab|jab, µab⟩ (126)

To proceed note
Jabz = Jaz + Jbz (127)

Jab± = Ja± + Jb± (128)

Exercise: Show
J2
ab = Jab±Jab∓ + J2

abz ∓ Jabz (129)
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In order to build ab states start with

|ja, ja⟩ ⊗ |jb, jb⟩ (130)

and note

Jabz|ja, ja⟩ ⊗ |jb, jb⟩ = Jaz|ja, ja⟩ ⊗ |jb, jb⟩ + Jbz|ja, ja⟩ ⊗ |jb, jb⟩ =

(µa + µb)|ja, ja⟩ ⊗ |jb, jb⟩ (131)

and

J2
ab|ja, ja⟩ ⊗ |jb, jb⟩ = (Jab−Jab+ + J2

abz + Jabz)|ja, ja⟩ ⊗ |jb, jb⟩ =

jab(jab + 1)|jaja⟩ ⊗ |jb, jb⟩. (132)

It follows that
|jab, jab⟩ = |ja, ja⟩ ⊗ |jb, jb⟩N (133)

where we can choose the normalization factor N = 1. It follows that all of the
vectors

|jab, µab⟩ (134)

can be constructed by repeated applications of Jab− = Ja− + Jb− to this state.
The expansion coefficients can be read off.

This gives 2jab+1 independent vectors, which is less than (2ja+1)×(2jb+1)
dimension of the Hilbert space. Since

Jabz|ja, µa⟩ ⊗ |jb, µb⟩ = (µa + µb)|ja, µa⟩ ⊗ |jb, µb⟩ (135)

it follows that there is only one vector with eigenvalue of Jabz with value ja +jb,
which must be the state |ja, ja⟩ ⊗ |jb, jb⟩. There are two independent vectors
with µab = ja + jb − 1, |ja, ja − 1⟩ ⊗ |jb, jb⟩ and |ja, ja⟩ ⊗ |jb, jb − 1⟩. One is
obtained by applying Jab− to |ja, ja⟩ ⊗ |jb, jb⟩

J−|ja + jb, ja + jb⟩ =√
2(ja + jb)(2(ja + jb) + 1)|ja + jb, ja + jb − 1⟩ =√

2ja(2ja + 1)|ja − 1, ja⟩ ⊗ |jb, jb⟩ +
√

2jb(2jb + 1)|ja, ja⟩ ⊗ |jb, jb − 1⟩. (136)

The orthogonal complement of this vector vanishes if Jab+ is applied to it, since
there is only one state with eigenvalue µa + µb. This state necessarily has
jab = ja + jb − 1 (i.e. this is the highest weight). This state can be identified
with |ja + jb − 1, ja + jb − 1⟩ which again is only defined up to normalization by
orthogonality

|ja + jb − 1, j1 + jb − 1⟩ =

N [
√

2jb(2jb + 1)|ja−1, ja⟩⊗|jb, jb−
√

2ja(2ja + 1)|ja, ja⟩⊗|jb, jb−1⟩]. (137)

This state has the form

|ja + jb − 1, j1 + jb − 1⟩ =

14



|jaja⟩ ⊗ |jb, jb − 1⟩Cjabjajb
ja+jb−1,ja,jb−1+

|jaja − 1⟩ ⊗ |jb, jb⟩Cjabjajb
ja+jb−1,ja−1,jb−1 (138)

The convention is to choose for ja ≥ jb, Cjabjajb
ja+jb−1,ja,jb−1 is real and positive and

the state is normalized to unity. This is only a convention - it is not required,
but it is necessary to stick with one convention in any calculation. Once this
state is fixed all of the other states with jab = ja + jb − 1 can be obtained using
lowering operators

This process can be continued since there are three independent states with
µab = ja +jb−2. The first two correspond to jab = ja +jb and jab = ja +jb−1 .
The state orthogonal to these is an eigenstate of J2

ab with eigenvalue ja + jb− 2.
This can be continued until we get the states with jab = ja − jb. This process
generates all of the Clebsch Gordan coefficients, which are matrix elements of
the unitary transformation relating these two bases.
Exercise: Show for ja ≥ jb

(2(ja+jb)+1)+(2(ja+jb−1)+1)+· · ·+(2(ja−jb)+1) = (2ja+1)(2jb+1) (139)

which means that when adding two angular momentum vectors

ja + jb ≥ jab ≥ |ja − jb|. (140)

and all states are accounted for. The Clebsch Gordan coefficients can be found
in tables or generated using computer programs.

Wigner functions:

Since independent angular momentum operators Ja and Jb commute it fol-
lows that

U(R) = e−i(Ja+Jb)·θθθ = e−iJa·θθθe−iJb·θθθ (141)

Taking matrix elements with tensor product states gives a product of Wigner
functions

⟨ja, µa| ⊗ ⟨jb, µb|U(R)|ja, νa⟩ ⊗ |jb, µb⟩ =

⟨ja, µa|e−iJa·θθθ|ja, νa⟩⟨jb, µb|e−iJb·θθθ|jb, νb⟩ =

Dja
µaνa

(R)Djb
µbνb

(R) (142)

Using Clebsch Gordan coefficients the tensor product states can be expanded
in eigenstates of Ja + Jb. The left side of (142) can be expressed as

ja+jb∑
j=|ja−jb|

j∑
µ,ν=−j

⟨ja, µa| ⊗ ⟨jb, µb|j, µ⟩⟨j, µ|U(R)|j, ν⟩⟨j, ν|ja, νa⟩ ⊗ |jb, µb⟩ =

ja+jb∑
j=|ja−jb|

j∑
µ,ν=−j

⟨ja, µa| ⊗ ⟨jb, µb|j, µ⟩Dj
µν(R)⟨j, ν|ja, νa⟩ ⊗ |jb, µb⟩ (143)
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Comparing these expressions, using the definition of Clebsch Gordan coefficients,
(124), gives

Dja
µaνa

(R)Djb
µbνb

(R) =
ja+jb∑

j=|ja−jb|

j∑
µ=−j

Cjjajb
µµaµb

Dj
µν

(R)Cjjajb
ννaνb

(144)

This decomposes the vector space spanned by the tensor product states into a
direct sum of subspaces that transform irreducibly under rotations.

Theorem: ∫
dRDja

µaνa
(R)Djb∗

µbνb
(R) = δjajbδµaµb

δνaνb

2ja + 1
(145)

Proof: To prove this note that for SU(2)

R = e−
i
2θθθ·σσσ (146)

implies
R∗ = e

i
2θθθ·σσσ

∗
= e−

i
2θθθ·σ2σσσσ2 = σ2Rσ2 = (−iσ2)R(iσ2). (147)

Using
R(πŷ) = cos(π

2
) − iσ2 sin(π

2
) = −iσ2 (148)

gives
D(R∗) = R(πŷ)D(R)R(−πŷ). (149)

Since
R(πŷ) = −iσ2 =

(
0,−1
1, 0

)
(150)

which gives R++ = R−− = 0 and R−+ = −R+− = 1. Using these in (110) gives

Dj
µν(R(πŷ)) = δµ−ν(−)j−µ (151)

and
Dj

µ,ν(R(−πŷ)) = δµ−ν(−)j+µ (152)

Equations (151) and (152) can be used in (149)) to get

Dj
µ,ν(R∗) = δµ−µ′(−)j−µDj

µ′,ν′(R)δν′−ν(−)j−ν = Dj
−µ,−ν(R)(−)2j−µ−ν

∫
dRDja∗

µa,νa
(R)Djb

µb,νb
(R) =

∫
dRDja

−µa,−νa
(R)Djb

µb,νb
(R) = (−)2ja−µa−νa

(−)2ja−µa−νaCjjajb
µ−µaµb

Cjjajb
ν−νaνb

∫
Dj

µν(R)dR (153)

Using (119) gives

(116) = (−)2ja−µa−νaC0jajb
0−µaµb

C0jajb
0−νaνb

. (154)
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This implies

ja = jb, µa = µb, νa = νb, (−)2ja−µa−νa = (−)2(ja−µa) = 1. (155)

Using the value of the Clebsch Gordan coefficient

C0jj
0,µ,µ = (−)j−µ

√
2j + 1

(156)

gives ∫
dRDja

µaνa
(R)Djb∗

µbνb
(R) = δjajbδµaµb

δνaνb

2ja + 1
(157)

which completes the proof of the theorem.

Tensor Operators

The beginning of the discussion on rotations started by considering how
vector operators transform under rotations. There are a number of quantities
in physics that transform like products of vectors under rotations. Examples
are the inertia tensor from classical mechanics, stress and strain tensors, etc.
In general under rotations of the coordinate system the components of these
objects transform like

V ′
i = RijVj (158)

A general function of an operator with components x has a Taylor series

f(x) = f(0) +
∑
i

fixi + 1
2
fijxixj + · · · (159)

Under rotations
U†(R)f(x)U(R) = f(0)U†(R)U(R)

+
∑
i

fiU
†(R)xiU(R) + 1

2
fijU

†(R)xiU(R)U†(R)xjU(R) + · · · =

f(0) +
∑
i

fiRijxj + 1
2
fijRikRjlxjxl+ (160)

In this expression first term is invariant, the second transforms like a vector,
the third term transform like a products of vectors, etc.

The quantities xjxl are components of a rank 2 Cartesian tensor. In general
a rank N Cartesian tensor operator has N indices and transforms like

U†(R)T i1···iNU(R) =
∑

Ri1j1 · · ·RiN jNT
i1···iN . (161)

While Cartesian tensors are useful, they involve non-trivial objects that do not
mix under rotations. Clearly the dot product of two vectors transforms like a
scalar, the cross product of two vectors transforms like a vector under rotations
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and the five remaining independent components transform like a traceless sym-
metric tensor. This means that a general rank two Cartesian tensor is made up
of three different types of operators that transform among themselves (scalars
to scalars, vectors to vectors, and traceless symmetric tensors to traceless sym-
metric tensors) under rotations and do not mix.

In general a high rank tensor can be decomposed into parts that transform
irreducibly under rotations. A spherical tensor operator is a collection of oper-
ators V i

µ that transform like

U(R)V j
µU

†(R) =
j∑

ν=−j

V j
νD

j
ν,µ(R) (162)

Theorem: Wigner Eckart - Let V j
µ be a spherical Tensor operator. Then

⟨ja, µa|V jb
µb
|ȷc, µc⟩ = Cjajbjc

µaµbµc

⟨ja∥V jb∥ȷc⟩√
2ja + 1

(163)

where ⟨ja∥V jb∥ȷc⟩ is independent of µa, µb, µc. This means that matrix elements
of spherical tensors in J2, Jz eigenstates are proportional to Clebsch Gordan
coefficients. The quantity ⟨ja∥V jb∥ȷc⟩ is called the reduced matrix element
which is the part that distinguishes different tensor operators with the same j.

proof: To prove this use

⟨ja, µa|V jb
µb
|ȷc, µc⟩ = ⟨ja, µa|U†(R)U(R)V jb

µb
U†(R)U(R)|ȷc, µc⟩. (164)

Inserting intermediate states gives∑
νaνbνc

D∗ja
µa,νa

(R)⟨ja, νa|V jb
νb
|jc, νc⟩Djb

νbµb
(R)Djc

νcµc
(R) =

∑
νaνbνc,j,ν,µ

D∗ja
µa,νa

(R)⟨ja, νa|V jb
νb
|jc, νc⟩Cjȷbjc

ννbνc
Dj

ν,µ(R)Cjȷbjc
µµbµc

. (165)

Integrating both sides over the Haar measure using (157) gives

∑
νaνbνc

⟨jaνa|V jb
νb
|jcνc⟩

Cjajbjc
νaνbνc

Cjajbjc
µaµbµc

2ja + 1
(166)

which gives

⟨jaµa|V jb
µb
|jc, µc⟩ = Cjajbjc

µaµbµc

⟨ja∥V jb∥jc⟩
2ja + 1

(167)

where
⟨ja∥V jb∥jc⟩ =

∑
νaνbνc

⟨ja, νa|V jb
νb
|jc, νc⟩Cjajbjc

νaνbνc√
2ja + 1

(168)
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is independent of the magnetic quantum numbers, µa, µb, µc.
This theorem determines selection rules to transitions induced by tensor

operators.
Spherical harmonics transform irreducibly under rotations. First note from

(162)
Y l
m(n̂) = ⟨n̂|l,m⟩ = ⟨R(θ, ϕ)ẑ|l,m⟩ =

⟨ẑ|U(R−1(θ, ϕ))|l,m⟩ = ⟨ẑ|l,m′⟩⟨l,m′|U(R−1(θ, ϕ))|l,m⟩ =

⟨ẑ|l,m′⟩Dl
m′m(R−1(θ, ϕ)) = ⟨ẑ|l,m′⟩D∗l

mm′(R(θ, ϕ)) (169)

where for active rotations

R(θ, ϕ) = Rz(ϕ)Ry(θ) (170)

and

⟨ẑ|l,m′⟩ = δm′0

√
2l + 1

4π
(171)

which gives

Y l
m(n̂) =

√
2l + 1

4π
D∗l

m0(R(θ, ϕ)) =
√

2l + 1
4π

D∗l
m0(Rz(ϕ)Ry(θ)y) =

√
2l + 1

4π
eimϕDl∗

m0(Ry(θ)) (172)

where Rz(ϕ)Ry(θ) is the rotation that rotates the unit vector with polar angles
θ and ϕ to the ẑ axis.

Recall that l = 1 spherical harmonics are

Y 0
1 =

√
4π
3

cos(θ) =
√

4π
3
z

r
(173)

Y 1
1 = −

√
3

8π
sin(θ)(cos(ϕ) + i sin(ϕ)) = −

√
3

4π
x+ iy√

2r
(174)

Y −1
1 =

√
3

8π
sin(θ)(cos(ϕ) − i sin(ϕ)) =

√
4π
3
x− iy√

2r
(175)

Replacing x by a general vector operator V we define the spherical components
of V by

V ±1
1 = ∓Vx ± iVy√

2
V 0

1 (176)

These transform like

V m′
1 = U(R)V m

1 U†(R) =
∑
n

V n
1 D

1
mn(R) (177)

Exercise: Calculate D1
mn(R) for a rotation about the ẑ axis.
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Exercise: Express V m′
1 =

∑
n V

n
1 D

1
mn(R) in term of cartesian components of

V and show that
V i′ =

∑
j

V jRji (178)

where Rij is an ordinary rotation about the z axis.

Integrating products of spherical harmonics and Wigner functions

The three formulas (119) (145) and (172) can be used to perform an inter-
esting class of integrals.

The steps are as follows
1) Products of Wigner functions can be replaced by a single Wigner function

by repeatedly using Clebsch Gordan coefficients∫
dRDj1

µ1ν1
[R]Dj2

µ2ν2
[R] =

∑
jµν

Cjj1j2
µµ1µ2

∫
dRDj1

µν [R]Cjj1j2
νν1ν2

=

C0j1j2
0µ1µ2

C0j1j2
0ν1ν2

(179)

using (144).
2) Products of Wigner functions and their complex conjugates can be re-

duced to a single product or a Wigner function and a complex conjugated
Wigner function that can be computed using (145)∫

dRDj1
µ1ν1

[R]Dj2
µ2ν2

[R]Dj3∗
µ3ν3

[R] =
∑
jµν

Cjj1j2
µµ1µ2

∫
dRDj1

µν [R]Dj3∗
µ3ν3

[R]Cjj1j2
νν1ν2

=

Cj3j1j2
µ3µ1µ2

Cj3j1j2
ν3ν1ν2

2j3 + 1
(180)

3) Integrals of products of spherical harmonics over polar angles can be
expressed as integral of products of Wigner functions over the Haar measure∫

sin θdθdϕY m1
l1

(θ, ϕ)Y m2
l2

(θ, ϕ) =

∫
sin θdθdϕ

√
2l1 + 1

4π

√
2l2 + 1

4π
D∗l1

m10(Rz(ϕ)Ry(θ))D∗l2
m20(Rz(ϕ)Ry(θ))

∫
sin θdθdϕdχ

4π

√
2l1 + 1

4π

√
2l2 + 1

4π
D∗l1

m10(Rz(ϕ)Ry(θ)Rz(χ))D∗l2
m20(Rz(ϕ)Ry(θRz(χ))) =

4π
√

2l1 + 1
4π

√
2l2 + 1

4π

∫
dRD∗l1

m10(R)D∗l2
m20(R) =√

2l1 + 1
√

2l2 + 1C0j1j2
0µ1µ2

C0j1j2
000 (181)

using (171).
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