29:5742 Sample Mid Term Exam 2/22

1. Consider the Hamiltonian

$$
H=e\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 3 & 4 \\
0 & 4 & 5
\end{array}\right)
$$

and the trial wave function

$$
\psi=\left(\begin{array}{c}
\cos (\phi) \\
0 \\
\sin (\phi)
\end{array}\right)
$$

a. Find the expectation value of the energy as a function of ϕ.

$$
\langle\psi| H|\psi\rangle=e\left(\cos (\phi)^{2}+5 \sin ^{2}(\phi)\right)=e\left(1+4 \sin ^{2}(\phi)\right)
$$

b. Find the extremal values of the variational parameter ϕ.

$$
\frac{d\langle\psi| H|\psi\rangle}{d \phi}=e 8 \sin (\phi) \cos (\phi)=4 e \sin (2 \phi)
$$

This vanishes for $\phi \in\left\{0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}\right\}$
c. Which solutions give an upper bound to the exact lowest energy eigenstate? Compute the bound.

$$
\frac{d^{2}\langle\psi| H|\psi\rangle}{d \phi^{2}}=8 e \cos (2 \phi)
$$

This is positive for $\psi \in\{0, \pi\}$

$$
E \leq e
$$

d. Which solutions give a lower bound to the exact highest energy eigenstate. Compute the bound.

$$
\frac{d^{2}\langle\psi| H|\psi\rangle}{d \psi^{2}}=8 e \cos (2 \phi)
$$

This is negative for $\psi \in\left\{\frac{\pi}{2}, \frac{3 \pi}{2}\right\}$

$$
E \geq 5 e
$$

2. $H=\hbar \omega a^{\dagger} a+i \lambda\left(a-a^{\dagger}\right)$
a. Treat the term proportional to λ as a perturbation. Use time-independent perturbation theory to find the first-order correction to the groundstate binding energy.

$$
\langle 0| i \lambda\left(a-a^{\dagger}\right)|0\rangle=0
$$

b. Use time-independent perturbation theory to find the first-order correction to the ground state wave function.

$$
\left|\psi_{0}^{1}\right\rangle=|1\rangle \frac{\langle 1| i \lambda\left(a-a^{\dagger}\right)|0\rangle}{\hbar \omega(0-1)}=|1\rangle \frac{i \lambda}{\hbar \omega}
$$

c. Use time-independent perturbation theory to find the second-order correction to the ground-state binding energy.

$$
E_{0}^{2}=-\frac{\lambda^{2}}{\hbar \omega}
$$

3. Consider a particle of mass m in a one-dimensional confining potential

$$
V(x)=\lambda \cosh (x)
$$

a. What is the classical momentum for this system in the classically allowed region?

$$
p_{c l}= \pm(2 m(E-\lambda \cosh (x)))^{\frac{1}{2}}
$$

b. What are the classical turning points for this system.

$$
\cosh (x)=\frac{E}{\lambda} \quad x= \pm \cosh ^{-1}\left(\frac{E}{\lambda}\right)
$$

c. How would you determine approximate ground state eigenvalue for this system using the WKB method? (DO NOT DO THE INTEGRAL!)

$$
\int_{-\cosh ^{-1}\left(\frac{E}{\lambda}\right)}^{\cosh ^{-1}\left(\frac{E}{\lambda}\right)}(2 m(E-\lambda \cosh (x)))^{\frac{1}{2}} d x=\left(n+\frac{1}{2}\right) \pi
$$

4. Consider a two-particle system consisting of a spin 1 and spin $1 / 2$ particle. Let $\mathbf{J}=\mathbf{J}_{1}+\mathbf{J}_{1 / 2}$. Let $|J, M\rangle$ be simultaneous eigenstates of J^{2} and J_{z}
a. What are the possible eigenvalues of J^{2} ?

$$
\left\{\frac{3}{4} \hbar^{2}, \frac{15}{4} \hbar^{2}\right\}
$$

b. Express

$$
|J, M\rangle=\left|\frac{3}{2}, \frac{3}{2}\right\rangle
$$

as a linear combination of spin 1 and spin $1 / 2$ eigenstates.

$$
\left|\frac{3}{2}, \frac{1}{2}\right\rangle=|1,1\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle
$$

c. Express

$$
|J, M\rangle=\left|\frac{3}{2}, \frac{1}{2}\right\rangle
$$

as a linear combination of spin 1 and spin $1 / 2$ eigenstates.

$$
\begin{gathered}
J_{-}\left|\frac{3}{2}, \frac{3}{2}\right\rangle=\sqrt{\left.\left(\frac{3}{2}+\frac{1}{2}\right)\left(\frac{3}{2}-\frac{1}{2}\right)+1\right)}\left|\frac{3}{2} \frac{1}{2}\right\rangle= \\
|1,0\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle \sqrt{(1+1)(1-1+1)}+ \\
|1,1\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle \sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)\left(\frac{1}{2}-\frac{1}{2}+1\right)} \\
\downarrow \\
\left|\frac{3}{2} \frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}|1,0\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\frac{1}{2}|1,1\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle
\end{gathered}
$$

d. Given the answer to part b explain how you would construct

$$
\left|\frac{1}{2}, \frac{1}{2}\right\rangle
$$

as a linear combination of spin 1 and spin $1 / 2$ eigenstates (do not calculate - just explain).
It must be orthogonal to $\left|\frac{3}{2}, \frac{1}{2}\right\rangle$ with the coefficient of $|1,1\rangle$ positive.

