## 29:5742 First Mid Term Exam <br> $4 / 22$

1. Consider the Hamiltonian

$$
H=\left(\begin{array}{ccc}
E_{1} & 0 & \lambda \\
0 & E_{2} & \lambda \\
\lambda & \lambda & E_{3}
\end{array}\right)
$$

where $E_{1}<E_{2}<E_{3}$ and $\lambda$ is small. Use Rayleigh Schrodinger perturbation theory compute
a. The first order correction to the unperturbed ground state energy eigenvalue.
b. The first order correction to the unperturbed ground state energy eigenvector.
c. The second order correction to the unperturbed ground state energy eigenvalue.
2. Let $H$ be a one dimensional harmonic oscillator Hamiltonian $H=\frac{p^{2}}{2 m}+$ $\frac{k x^{2}}{2}$.
a. What is the classical momentum?
b. Where are the classical turning points?
c. What is the form of the WKB wave function in the classically forbidden regions?
d. Write down an the equation for the WKB eigenvalues?
e. Solve for the eigenvalues?
3. The eigenvalues and Hamiltonian for a three dimensional Harmonic oscillator are

$$
H=-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{l(l+1)}{r^{2}}\right)+\frac{1}{2} k r^{2} \quad E_{n}=\hbar \sqrt{\frac{k}{m}}\left(2 n+l+\frac{3}{2}\right) .
$$

a. Use the Hellmann-Feynman theorem to find the expectation value of $r^{2}$.
b. Use the Hellmann-Feynman theorem to find the expectation value of $p^{2}$.
c. Use the Hellmann-Feynman theorem to find the expectation value of $\frac{1}{r^{2}}$.
4. Let $V_{2}^{\mu}$ be a $j=2$ spherical tensor operator. Consider matrix elements $\left\langle j_{1}, \mu_{1}\right| V_{2}^{\mu}\left|j_{2}, \mu_{2}\right\rangle$
a. What values of $j_{1}$ lead to non-zero matrix elements?
b. What values of $\mu_{1}$ lead to non-zero matrix elements?
c. Assume that $c=\left\langle j_{1}, 0\right| V_{2}^{0}\left|j_{2}, 0\right\rangle$ has been measured. What is $\left\langle j_{1}, j_{1}\right| V_{2}^{0}\left|j_{2}, j_{1}\right\rangle$ ?
d. Calculate $\int d R U(R) V_{2}^{\mu}\left|j_{2}, \mu_{2}\right\rangle$.
express you answers to parts c.) and d.) in terms of Clebsch-Gordan coefficients. Do not evaluate the Clebsch-Gordan coefficients.

$$
\int_{0}^{\pi} \sin ^{2}(\theta) d \theta=\frac{\pi}{2}
$$

## Solutions

1. 

$$
\begin{gathered}
H_{0}=\left(\begin{array}{ccc}
E_{1} & 0 & 0 \\
0 & E_{2} & 0 \\
0 & 0 & E_{3}
\end{array}\right) \quad V=\left(\begin{array}{ccc}
0 & 0 & \lambda \\
0 & 0 & \lambda \\
\lambda & \lambda & 0
\end{array}\right) \\
\left|\psi_{1}^{0}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right) \quad\left|\psi_{2}^{0}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad\left|\psi_{3}^{0}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

a. The first order correction to the unperturbed ground state energy eigenvalue.

$$
E_{1}^{1}=\left\langle\psi_{1}^{0}\right| V\left|\psi_{1}^{0}\right\rangle=\left(\begin{array}{ccc}
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & \lambda \\
0 & 0 & \lambda \\
\lambda & \lambda & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=0
$$

b. The first order correction to the unperturbed ground state energy eigenvector.

$$
\begin{gathered}
\left|\psi_{1}^{0}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \frac{\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & \lambda \\
0 & 0 & \lambda \\
\lambda & \lambda & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}{E_{1}-E_{2}}+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \frac{\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & \lambda \\
0 & 0 & \lambda \\
\lambda & \lambda & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}{E_{1}-E_{3}}= \\
\\
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \frac{\lambda}{E_{1}-E_{3}}
\end{gathered}
$$

c. The second order correction to the unperturbed ground state energy eigenvalue.

$$
E_{1}^{2}=\frac{\left.\left|\left\langle\psi_{3}^{0}\right| V\right| \psi_{1}^{0}\right\rangle\left.\right|^{2}}{E_{1}-E_{2}}=\frac{\left|\left(\begin{array}{ccc}
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & \lambda \\
0 & 0 & \lambda \\
\lambda & \lambda & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right|^{2}}{E_{1}-E_{3}}=\frac{\lambda^{2}}{E_{1}-E_{3}}
$$

2. 

a. What is the classical momentum?

$$
p_{c l}= \pm \sqrt{2 m\left(E-\frac{1}{2} k x^{2}\right)}
$$

b. Where are the classical turning points?

$$
x_{ \pm}= \pm \sqrt{\frac{2 E}{k}}
$$

c. What is the form of the WKB wave function in the classically forbidden regions?

$$
\begin{array}{ll}
\psi(x)=\frac{c}{\left(2 m\left(\frac{1}{2} k x^{2}\right)-E\right)^{1 / 4}} e^{-\frac{1}{\hbar} \int_{x_{+}}^{x} \sqrt{\left(2 m\left(\frac{1}{2} k x^{\prime 2}\right)-E\right)} d x^{\prime}} & x>x_{+} \\
\psi(x)=\frac{c}{\left(2 m\left(\frac{1}{2} k x^{2}\right)-E\right)^{1 / 4}} e^{-\frac{1}{\hbar} \int_{x}^{x_{-}} \sqrt{\left(2 m\left(\frac{1}{2} k x^{\prime 2}\right)-E\right)} d x^{\prime}} & x<x_{-}
\end{array}
$$

d. Write down an the equation for the WKB eigenvalues?

$$
\begin{gathered}
\int_{-\sqrt{\frac{2 E}{m}}}^{\sqrt{\frac{2 E}{m}}} \sqrt{2 m\left(E-\frac{1}{2} k x^{2}\right)} d x=\sqrt{2 m E} \int_{-\sqrt{\frac{2 E}{m}}}^{\sqrt{\frac{2 E}{m}}} \sqrt{\left(1-\frac{k}{2 E} x^{2}\right)} d x= \\
\sqrt{2 m E} \sqrt{\frac{2 E}{k}} \int_{-1}^{1} \sqrt{1-u^{2}} d u=2 E \sqrt{\frac{m}{k}} \frac{\pi}{2}=\pi \hbar\left(n+\frac{1}{2}\right)
\end{gathered}
$$

e. Solve for the eigenvalues?

$$
E_{n}=\hbar \sqrt{\frac{k}{m}}\left(n+\frac{1}{2}\right)
$$

3. 

a. Use the Hellmann-Feynman theorem to find the expectation value of $r^{2}$.

$$
\begin{gathered}
\frac{\partial H}{\partial k}=\frac{r^{2}}{2} \\
\langle\psi| \frac{\partial H}{\partial k}|\psi\rangle=\langle\psi| \frac{r^{2}}{2}|\psi\rangle=\frac{\partial E}{\partial k}=\frac{\hbar}{2 \sqrt{m k}}\left(2 n+l+\frac{3}{2}\right) \\
\langle\psi| r^{2}|\psi\rangle=\frac{\hbar}{\sqrt{m k}}\left(2 n+l+\frac{3}{2}\right)
\end{gathered}
$$

b. Use the Hellmann-Feynman theorem to find the expectation value of $p^{2}$.

$$
\begin{gathered}
\frac{\partial H}{\partial m}=-\frac{p^{2}}{2 m^{2}} \\
\langle\psi| \frac{\partial H}{\partial k}|\psi\rangle=-\frac{1}{2 m^{2}}\langle\psi| \frac{p^{2}}{2}|\psi\rangle=\frac{\partial E}{\partial m}=-\frac{\hbar}{2} \sqrt{\frac{k}{m^{3}}}\left(2 n+l+\frac{3}{2}\right) \\
\langle\psi| p^{2}|\psi\rangle=\hbar \sqrt{m k}\left(2 n+l+\frac{3}{2}\right)
\end{gathered}
$$

c. Use the Hellmann-Feynman theorem to find the expectation value of $\frac{1}{r^{2}}$.

$$
\begin{gathered}
\frac{\partial H}{\partial l}=\frac{\hbar^{2}(2 l+1)}{2 m r^{2}} \\
\langle\psi| \frac{\partial H}{\partial l}|\psi\rangle=\frac{\hbar^{2}(2 l+1)}{2 m}\langle\psi| \frac{1}{r^{2}}|\psi\rangle=\frac{\partial E}{\partial l}=\hbar \sqrt{\frac{k}{m}} \\
\langle\psi| \frac{1}{r^{2}}|\psi\rangle=\frac{\sqrt{m k}}{\hbar} \frac{2}{2 l+1}
\end{gathered}
$$

4. 

a. What values of $j_{1}$ lead to non-zero matrix elements?

$$
\left|j_{2}-2\right| \leq j_{1} \leq j_{2}+2
$$

b. What values of $\mu_{1}$ lead to non-zero matrix elements?

$$
\mu_{1}=\mu+u_{2}
$$

c. Assume that $c=\left\langle j_{1}, 0\right| V_{2}^{0}\left|j_{2}, 0\right\rangle$ has been measured. What is $\left\langle j_{1}, j_{1}\right| V_{2}^{0}\left|j_{2}, j_{1}\right\rangle$ ?

$$
\left\langle j_{1}, j_{1}\right| V_{2}^{0}\left|j_{2}, j_{1}\right\rangle=c \frac{C_{j_{1} j_{1}}^{j_{1} 2 j_{2}}}{C_{000}^{j_{1} 2 j_{2}}}
$$

d. Calculate $\int d R U(R) V_{2}^{\mu}\left|j_{2}, \mu_{2}\right\rangle$.

$$
\begin{gathered}
\int d R U(R) V_{2}^{\mu}\left|j_{2}, \mu_{2}\right\rangle=\sum_{\nu, \nu_{2}} \int d R V_{2}^{\nu}\left|j_{2}, \nu_{2}\right\rangle D_{\nu \mu}^{2}(R) D_{\nu_{2} \mu_{2}}^{j_{2}}(R) \\
\sum_{\nu, \nu_{2}} \int d R V_{2}^{\nu}\left|j_{2}, \nu_{2}\right\rangle C_{\alpha \nu \nu_{2}}^{j 2 j_{2}} D_{\alpha \beta}^{j}(R) C_{\beta \mu \mu_{2}}^{j 2 j_{2}}=\sum_{\nu, \nu_{2}} V_{2}^{\nu}\left|j_{2}, \nu_{2}\right\rangle C_{0 \nu \nu_{2}}^{02 j_{2}} C_{0 \mu \mu_{2}}^{02 j_{2}}=
\end{gathered}
$$

$$
\sum_{\nu=-2}^{2} V_{2}^{\nu}|2,-\nu\rangle C_{0 \nu-\nu}^{022} C_{0 \mu-\mu}^{022} \delta_{\mu_{2},-\mu} \delta_{j_{2}, 2}
$$

