29:5742 Homework 8 Due 3/29

1. Consider a three-dimensional scattering problem for two particles of mass m scattering with a potential

$$
\left\langle\mathbf{P}^{\prime}, \mathbf{k}^{\prime}\right| V|\mathbf{P}, \mathbf{k}\rangle=-\lambda \delta\left(\mathbf{P}^{\prime}-\mathbf{P}\right) \frac{1}{a^{2}+\mathbf{k}^{\prime 2}} \frac{1}{a^{2}+\mathbf{k}^{2}}
$$

Solve the Lippmann Schwinger equation exactly to find the scattering wave function in momentum space

$$
\left\langle\mathbf{P}^{\prime}, \mathbf{k}^{\prime} \mid \mathbf{P}, \mathbf{k}^{-}\right\rangle=\delta\left(\mathbf{P}-\mathbf{P}^{\prime}\right)\left\langle\mathbf{k}^{\prime} \mid \mathbf{k}^{-}\right\rangle
$$

2. For the potential of problem 1 find $\left\langle\mathbf{r}^{\prime}\right| V|\mathbf{r}\rangle$. Write down the Lippmann Schwinger equation in coordinate space for this potential. Do not solve.
3. For the potential of problem 1 find the scattering amplitude $F\left(\mathbf{k}^{\prime}, \mathbf{k}\right)$ and the differential cross section in the center of mass frame.
4. For the potential of problem 1 calculate the total cross section.
5. For the potential of problem 1 the Born approximation can be obtained from the exact solution by keeping only the term in the scattering amplitude that is linear in the coupling constant λ. Compute the differential cross section in the Born approximation and compare your result to the exact cross section.
6. Verify that the Born approximation in 5.) approaches the exact cross section in the high-energy limit.

General remarks - If we expand a general potential in a basis and truncate the expansion to N terms we get the approximation

$$
V \approx \sum_{m, n=1}^{N}|m\rangle\langle m| V|n\rangle\langle n|
$$

Potentials of this form are called separable potentials. The potential of problem 1, which has this form for $N=1$, is the simplest example of a separable potential. A better approximate separable potential is

$$
V \approx \sum_{m, n=1}^{N} V|m\rangle\langle m| V|n\rangle^{-1}\langle n| V
$$

where $\langle m| V|n\rangle^{-1}$ is the inverse of the matrix $\langle m| V|n\rangle$.

Homework 8
(1)

$$
\begin{aligned}
& g(k)=\left(a^{2}+k^{2}\right)^{-1} \\
& \left\langle\bar{k}^{\prime} \mid \bar{k}_{-}\right\rangle=\delta\left(\bar{k}^{\prime}-\bar{k}\right) \\
& -\lambda \frac{1}{k^{2} / 2 \mu-k^{\prime \prime} / 2 \mu^{+i}} g\left(k^{\prime}\right) \\
& \underbrace{\int g\left(k^{\prime \prime}\right)\left\langle k^{\prime \prime} \mid k_{-}\right\rangle}_{h(k)} \underbrace{\int \underbrace{}_{h}}_{d^{3} k^{\prime \prime}}
\end{aligned}
$$

To solve this multiply by $g\left(k^{\prime}\right)$ and integrate oven k^{\prime}

$$
h(k)=g(k)-\lambda \underbrace{\int \frac{g\left(k^{\prime}\right) g\left(k^{\prime}\right) d^{3} k^{\prime}}{k^{2} / 2 \mu-k^{\prime} / 2 \mu}+1 \epsilon}_{I(k)} h(k)
$$

The equation has the fum

$$
\begin{aligned}
& h(k)=g(k)-\lambda \pm(k) h(k) \\
& (1+\lambda I(k)) h(k)=g(k) \\
& h(k)=\frac{g(k)}{1+\lambda I(k)}
\end{aligned}
$$

The solution has the form

$$
\begin{aligned}
\left\langle k^{\prime} \mid R^{-}\right\rangle & =\delta\left(\bar{R}^{\prime}-\mathbb{R}\right) \\
& -\frac{\lambda}{1+\lambda I(k)} \frac{g(k) g(k)}{R^{2} / 2 \mu-k^{\prime} / 2 \mu}+i \epsilon
\end{aligned}
$$

To complete the calculatim we must evaluate I (R)

$$
\begin{aligned}
& T(R)=\int d^{3} k^{\prime} \frac{g\left(R^{\prime}\right) g\left(k^{\prime}\right)}{\frac{k^{\prime}}{2 \mu}-\frac{k^{\prime \prime}}{2 \mu}+i \epsilon}= \\
& -2 M \int d^{3} k^{\prime}\left(\frac{1}{\left(k^{\prime 2}+a^{2}\right.}\right)^{2} \frac{1}{k^{\prime 2}-k^{2}}-i \varepsilon^{\prime} \\
& -2 \mu\left(-\frac{1}{2 a} \frac{d}{d a}\right) \int \frac{k^{\prime 2} 4 \Gamma d k}{\left(k^{\prime 2}+a^{2}\right)\left(k^{\prime 2}-k^{2}-i \epsilon^{\prime}\right)}
\end{aligned}
$$

The integral can be dome using the residue thecren (there is no contmbutim from the semicire as $R \rightarrow \infty$ ।

This has poles $a+\quad k= \pm i a$
and $k+i \in$, $-k-i \in$-w
ain pick ur poles in the upper half plane

$$
\begin{aligned}
& (-2 \mu)(2 \pi i)(4 \pi)\left(-\frac{1}{2 a} \frac{d}{d a}\right)\left\{\frac{-a^{2}}{2 i a\left(-a^{2}-k\right)+}\right. \\
& \left.\frac{k^{2}}{2 k\left(k^{2}+a^{2}\right.}\right\} \\
& \frac{\delta+i^{2}}{a} i \frac{d}{d a}\left(\frac{1}{2}\left(\frac{k-i a}{k^{2}+a^{2}}\right)\right) \\
& \frac{\delta \pi^{2} i}{2 a} \frac{d}{d a}\left(\frac{R-1 G}{(k-i s)(k+i G)}\right)=\frac{4 \pi^{2} i}{a} \frac{(-) i}{(R+i G)^{2}} \\
& =\frac{471^{2}}{a(k+i a)^{2}} \\
& \therefore \quad I(k)=\frac{4 T 1^{2}}{a(R+i a)^{2}}= \\
& =\frac{4 \pi^{2}}{a} \frac{(k-i a)^{2}}{k^{2}+a^{2}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \langle\bar{r}\rangle \vee\left|\bar{r}^{\prime}\right\rangle= \\
& \int\langle F \mid \bar{k}\rangle(-\lambda g(k)) g\left(R^{\prime}\right)\left\langle R^{\prime} \mid r^{\prime}\right\rangle d^{3} k d^{3} k^{\prime}
\end{aligned}
$$

To compute this note

$$
\begin{aligned}
& \int\langle r \mid \bar{k}\rangle g(k) d^{3} k= \\
& \frac{1}{(2 \pi \hbar)^{3 / 2}} \int e^{-i \bar{k} \cdot \bar{r} / k} \frac{d^{3} h}{k^{2}+a^{2}}= \\
& \frac{1}{(2+\hbar)^{3 / 2}} 2 \pi \int_{0}^{\pi} \frac{e^{-i k r \cos c / n} k^{2} d k \sin \theta d \theta}{k^{2}+a^{2}} \\
& L e+\quad u=\cos u \quad d u=-\sin \theta d 0
\end{aligned}
$$

$$
4: 1 \rightarrow-1
$$

$$
\begin{aligned}
& \frac{2 \pi}{(2 \pi \hbar)^{3 / 2}} \int_{0}^{\infty} \frac{k^{2} d k}{k^{2}+a^{2}} \int_{-1}^{1} e^{-i k r u / h} d u= \\
& \frac{2 \pi}{(2 \pi h)^{3 / 2}} \int_{0}^{\infty} \frac{k^{2} d h}{k^{2}+a}\left(\frac{\hbar e^{-i k r / n}}{-i k r}-\frac{h e^{i k r / h}}{-i k r}\right) \\
& \frac{2 \pi \hbar}{(2 \pi \hbar)^{3 / 2}} \frac{1}{r} \int_{0}^{\infty} \frac{k d k}{k^{2+a}}\left(e^{-i k r / k}-e^{i k r / h}\right)
\end{aligned}
$$

Let $k \rightarrow k^{\prime}=-k$ in the second. mote ar.

$$
=i \frac{(2+\hbar)}{(2+\hbar)^{3 /}} \frac{1}{r} \int_{-\infty}^{\infty} \frac{k d k}{\left(k^{2}+a^{2}\right)} e^{-i k r / \pi}
$$

this can be comported
using the residue theorem

- we need tu close in the lower $n a i f$ plan

$$
\begin{aligned}
& i \frac{2 \pi \hbar}{(2 \pi \hbar)^{3 / 2}} \frac{1}{r}(-2 \pi i) \times\left(\frac{-i a}{-2 i a} e^{-a r / \hbar}\right) \\
& \sqrt{\frac{\pi}{2} \hbar} \frac{1}{r} e^{-a r / \hbar}
\end{aligned}
$$

using these in the expression ln V gives

$$
\begin{aligned}
& \langle r| \vee\left|r^{\prime}\right\rangle=-\frac{\lambda \pi}{2 \hbar} \frac{e^{-a r / h}}{r} \frac{e^{-a r^{\prime} / n}}{r^{\prime}} \\
& \left.\left\langle\bar{r} \mid k_{-}\right\rangle=\frac{1}{(2 \pi \hbar)^{3 / h} e^{i \bar{R} \cdot \sigma / h}} \right\rvert\, \\
& -\frac{2 \pi \mu}{\hbar}\left(-\frac{\lambda \pi}{2 \hbar}\right) \int \frac{e^{i k / r-r^{\prime} / / h}}{\left|r-r^{\prime}\right|} \frac{e^{-a r^{\prime} / n}}{r^{\prime}} v \\
& \int \frac{e^{-a r^{\prime \prime} / n}\left\langle\dot{r}^{\prime \prime} \mid R_{t}\right\rangle}{r^{\prime \prime}} d^{3} r^{\prime \prime} d^{3 r^{\prime}}
\end{aligned}
$$

(3) $F\left(\bar{k}^{\prime} \bar{k}\right\rangle=-(2 \pi)^{2} \mu \hbar\left\langle\bar{k}^{\prime}\right| T|k\rangle$
(3) $F\left(\bar{k}^{\prime} \bar{k}\right)=-(2 \pi)^{2} \mu \hbar\langle\bar{k}| T|\bar{k}\rangle$

$$
\begin{aligned}
& T=V+V\left(E-H_{0}+i \epsilon\right)^{-1} T \\
& =-\lambda|g\rangle\langle g|-\lambda|g\rangle\langle g|(E-H+i \epsilon)^{-1} T
\end{aligned}
$$

by inspection $T=|g\rangle x$

$$
\begin{aligned}
& |g\rangle x=-\lambda|g\rangle\langle q| \\
& \quad-\lambda|g\rangle\langle q|\left(E-k_{c}+i \epsilon\right)^{-1}|g\rangle x
\end{aligned}
$$

solving lu X

$$
\begin{gathered}
\left(1+\lambda\langle g|\left(E-M_{0}+i G\right)^{-1}|g\rangle\right) x \\
=-\lambda\langle g|
\end{gathered}
$$

$$
x=\underbrace{1+\lambda \underbrace{\left.\langle q| E-H_{-}+G\right)^{\top}|q\rangle}_{\text {fan }}}_{I(R) \text { from }}\langle q|
$$

problem (

$$
\begin{aligned}
& \left\langle k^{\prime}\right| T|k\rangle=\frac{-\lambda g\left(k^{\prime}\right) g(k)}{1+\lambda I(k)} \\
& F\left(\bar{k}^{\prime} k\right)=\frac{2+1^{2} \mu \hbar \lambda}{1+\lambda I(q)} g\left(k^{\prime}\right) g(k)
\end{aligned}
$$

(4) In This case

$$
\begin{aligned}
& \sigma_{T}=\int\left|F\left(\bar{k}^{\prime} k\right)\right|^{2} d \Omega=4 \pi|F(R R)|^{2} \\
& \frac{16 \pi^{3} \mu^{2} \hbar^{2} \lambda^{2} g^{4}(k)}{(1+\lambda I(R))\left(1+\lambda I(R)^{*}\right)}
\end{aligned}
$$

(5) From problem 3 <ki tiki> becomes V bu setting $I(k) \rightarrow 0$

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega_{B}}=4+r^{2} \mu^{2} \hbar^{2} \lambda^{2} g^{4}(\sigma) \\
& \frac{d \sigma}{d \Omega e}=\frac{d \sigma}{d \Omega_{B}} \frac{1}{\mid 1+\lambda I(k) 1^{2}}
\end{aligned}
$$

(6) From problem l as $k \rightarrow \infty$ $I(k) \rightarrow 0$ which is the Bun appouximation.

