Phys 5742

Homework 5 - Due Friday 3/1

1. Use the variational method to estimate the ground state energy of the Hamiltonian of a one-dimensional anharmonic oscillator:

$$
H=\frac{1}{2} p^{2}+\frac{1}{2} x^{2}+\lambda x^{4}
$$

using a trial radial wave function of the form $N(\alpha) e^{-\alpha x^{2}}$ where α is a free parameter. Hint: the Gamma function is useful for computing the integrals.
2. Consider the variational functional

$$
F[|\psi\rangle]=\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}
$$

Show that the states $|\psi\rangle$ that make this functional stationaly are eigenstates of H. Assume that

$$
|\psi\rangle=\left|\psi_{0}\right\rangle+\delta|\psi\rangle
$$

and use lagrange multipliers to fix the normalization.
3. Consider a Hamiltonian that is known to be bounded above and below. This happens, for example, in systems involving a finite number of spins. Find a variational principle that gives a lower bounds on the largest eigenvalue.
4. Show that

$$
\int_{-\infty}^{\infty} A i(x-y) A i\left(x-y^{\prime}\right) d x=\delta\left(y-y^{\prime}\right)
$$

5. A particle of mass m experiences a constant gravitational force $F=-m g$ in one dimension. Find the eigenstates of the corresponding quantum Hamiltonian.
6. Let $X=c t I+\mathbf{x} \cdot \boldsymbol{\sigma}$ be a 2×2 matrix where $\boldsymbol{\sigma}$ represents the three Pauli matrices considered as a vector and c is the speed of light in a vacuum. Let A be a 2×2 matrix with $\operatorname{det}(A)=1$. Consider the transformation

$$
X^{\prime}=A X A^{\dagger}
$$

a. Show that $(c \tau)^{2}:=(c t)^{2}-\mathbf{x} \cdot \mathbf{x}=\left(c t^{\prime}\right)^{2}-\mathbf{x}^{\prime} \cdot \mathbf{x}^{\prime}$.
b. Show that sucessive transformation of this type preserve $(c \tau)^{2}$. This group is called $S L(2, C)$ - it is closely related to the group of Lorentz transformations, although as in $S U(2)$ both A and $-A$ give the same transformation.
c. Show that for $\sigma_{\mu}=\left(I, \sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ that

$$
\left(c t, x_{1}, x_{2}, x_{3}\right)=\frac{1}{2} \operatorname{Tr}\left(\sigma_{\mu} X\right)
$$

Solutions HW \#5
(1) inteqrais

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-x} x^{s-1} d x=\Gamma(s) \\
& \Gamma(s+1)=s \Gamma(s) \\
& \int_{-\infty}^{\alpha} x^{2 n} e^{-\alpha x^{2}} d x= \\
& u=\alpha x^{2} \\
& d u=2 \alpha x d x \\
& 2 \int_{0}^{\infty} x^{2 n} e^{-\alpha x^{2}} d x \\
& =2 \alpha\left(\frac{u}{\alpha}\right)^{1 / 2} d x \\
& d x=\frac{1}{2} \frac{1}{(\alpha u)^{1 / 2}} d u \\
& 2 \int_{0}^{\infty}\left(\frac{u}{\alpha}\right)^{n} e^{-u} \frac{1}{2} \frac{d u}{(\alpha u)^{1 / 2}} \\
& \alpha^{-n-\frac{1}{2}} \int_{0}^{\infty} u^{n+\frac{1}{2}-1} e^{-u}=\frac{1}{(\alpha)^{n+1 / 2} \Gamma\left(n+\frac{1}{2}\right)} \\
& \because \int_{-\infty}^{\infty} x^{2 n} e^{-\alpha x^{2}}=\frac{1}{\alpha^{n+1 / 2}} \Gamma\left(n+-\frac{1}{2}\right) \\
& n=0 \quad \int e^{-\alpha x^{2}}=\frac{\Gamma\left(r^{1 / 2)}\right.}{\alpha^{1 / 2}}=\sqrt{\frac{\pi}{\alpha}} \\
& n=1 \quad \int x^{2} e^{-\alpha x^{2}}=\frac{\Gamma(3 / 2)}{\alpha^{3 / 2}}=\frac{\frac{1}{2} \sqrt{\pi}}{\alpha \sqrt{\alpha}}=\frac{1}{2 \alpha} \sqrt{\frac{\pi}{\alpha}} \\
& n=2 \quad \int x^{4} e^{-\alpha x^{2}}=\frac{\Gamma(5 / 1)}{\alpha^{5 / 2}}=\frac{\frac{3}{2} \frac{1}{2} \sqrt{\pi}}{\alpha^{2} \sqrt{\alpha}}=\frac{3}{4 \alpha^{2}} \sqrt{\frac{\pi}{\alpha}}
\end{aligned}
$$

step i computc tue normallzation cocelicient

$$
\frac{1=N^{2} \int e^{-2 \alpha x^{2}}=\sqrt{\frac{\pi}{2 \alpha}}}{N^{2}=\sqrt{\frac{2 \alpha}{\pi}} \quad N=\left(\frac{2 \alpha}{\pi}\right)^{1 / 4}}
$$

ster 2 compute

$$
\begin{aligned}
& \langle 4| \frac{1}{2} e^{2}|\psi\rangle= \\
& N^{2} \int e^{-\alpha x^{2}}\left(-\frac{1}{2} \frac{d^{2}}{d x^{2}}\right) e^{-\alpha x^{2}} d x= \\
& N^{2} \int e^{\alpha x^{2}}\left(-\frac{1}{2} \frac{d}{2 x}\right)\left(-2 \alpha x e^{-\alpha x^{2}}\right) d x= \\
& N^{2} \int e^{-\alpha x^{2}}\left(-\frac{1}{2}\right)\left(-2 \alpha+4 \alpha^{2} x^{2}\right) e^{-\alpha x^{2}}= \\
& N^{2}\left(\alpha \int e^{-2 \alpha x^{\prime}} d x-2 \alpha^{2} \int x^{2} e^{-2 \alpha x^{\prime}}\right)= \\
& \left.N^{2}\left(\alpha \frac{1}{N^{2}}-2 \alpha^{2} \frac{1}{4 \alpha} \frac{1}{N^{2}}\right)=\frac{1}{2} \alpha\right)
\end{aligned}
$$

sten 3 computs

$$
\begin{aligned}
& \langle\Psi| \frac{1}{2} x^{2}|\Psi\rangle= \\
& N^{2} \frac{1}{2} \int e^{-2 \alpha x^{2}} x^{2}=\frac{1}{2} N^{2} \frac{1}{4 \alpha} \frac{1}{N^{2}}=\frac{1}{8 \alpha}
\end{aligned}
$$

stap 4 comput

$$
\begin{aligned}
& \langle\psi| \lambda x^{4}|t\rangle=\lambda \int N^{2} e^{-2 \alpha y^{2}} x^{4} d x= \\
& N^{2} \frac{3}{16 \alpha^{2}} \frac{\lambda}{N^{2}}=\frac{3 \lambda}{16 \alpha^{2}}
\end{aligned}
$$

adding these three tenons
gives

$$
\langle\psi| H|\psi\rangle=\frac{1}{2} \alpha+\frac{1}{8 \alpha}+\frac{3-1}{16 \alpha^{2}}
$$

ster 5 find the critical values of α

$$
\frac{d}{d \alpha}\left\langle\psi \left(H|\psi\rangle=\frac{1}{2}-\frac{1}{8 \alpha^{2}}-\frac{6 \lambda}{16 \alpha^{3}}=-0\right.\right.
$$

multiply by $2 \alpha^{3}$

$$
\alpha^{3}-\frac{1}{4} \alpha-\frac{3}{4} \lambda=0
$$

mus is a cubic equatorit has 3 roots - this
is neaative as $\alpha \rightarrow-\infty$ ana positive as $\alpha \rightarrow+\infty$
so there is at least 1 neal root
check the twining point

$$
3 \alpha^{2}-\frac{1}{4}=0 \quad \alpha= \pm \frac{1}{2 \sqrt{3}}
$$

The value of the roots depend on λ but

Let α^{*} be the positive root =1)

$$
\langle\psi| H|\psi\rangle=\frac{1}{2} \alpha^{*}-\frac{1}{2 \alpha^{*}}-\frac{3}{16} \lambda \frac{1}{\left(\alpha^{r}\right)^{2}}
$$

(2) $F\left[\phi_{0}+\lambda \delta \notin\right]$

$$
\begin{aligned}
& \left\langle Q_{1}+\lambda \delta \phi\right| H\left|\phi_{0}+\lambda \delta \phi\right\rangle-n\left\langle Q_{0}+\lambda \delta \phi \mid \phi_{0}+\lambda \delta \phi\right\rangle \\
& \frac{d F}{d \lambda}\left[Q_{0}+\lambda \delta e\right]=0= \\
& \left\langle\phi_{1}\right|+\left(|\delta \phi\rangle+\langle\delta \phi| H\left|\phi_{0}\right\rangle\right. \\
& -n\left\langle Q_{0} \mid \delta Q\right\rangle-n\left\langle\delta \phi \mid \phi_{0}\right\rangle
\end{aligned}
$$

replace δQ boy isp

$$
\begin{aligned}
0 & =i\langle\phi .| H|\delta \phi\rangle-i\langle\delta \phi \mid H(\phi)\rangle \\
& -n i\langle\phi . \mid \delta Q\rangle+i\left\langle\delta Q \mid \phi_{-}\right\rangle
\end{aligned}
$$

cancel the lack σ i in the second equation ana subtract from the lint equal.

$$
2\langle\delta \phi| H\left|Q_{0}\right\rangle-n 2\left\langle\delta \Phi \mid Q_{0}\right\rangle=0
$$

since this must hold
en all 189\rangle we et

$$
\begin{aligned}
& \left.2|-1| \phi_{0}\right\rangle=2 n\left|\phi_{2}\right\rangle \quad u \\
& H|+.\rangle=v \mid q-7 \\
& \text { multipiz bu }<x_{2} \\
& \frac{\langle Q .| G|Q\rangle}{\langle Q(2 .\rangle}=n
\end{aligned}
$$

$=1$
(1) $\left|Q_{0}\right\rangle$ is an elqenstale of H. with elqenvalu n.
(2) $P u\langle Q . \mid \phi\rangle=1 \quad$ N 1\rangle
the expectatu value of $\langle 1 H 14\rangle$
(3)

$$
\begin{aligned}
& \langle\psi||||\psi\rangle= \\
& \sum_{n}\left\langle\psi \mid \Phi_{n}\right\rangle E_{n}\left\langle\varphi_{n} \mid \Psi\right\rangle \\
& \left.\sum_{n} K \psi\left|\phi_{n}\right\rangle\right|^{2} E_{n}= \\
& \left.\sum_{n} K \psi\left|\phi_{n}\right\rangle\right|^{2}\left(E_{n}-E^{T}+E^{T}\right)=
\end{aligned}
$$

Where E^{i} is the lasqeit
elaenvalue

$$
\begin{aligned}
& =E^{\uparrow}-\sum_{n}^{\sum_{n}} \underbrace{\left\langle\varphi \mid Q_{n}\right\rangle}_{\geq 0} \left\lvert\,\left(E^{\left.\hat{\prime}-E_{n}\right)} \begin{array}{c}
\geq
\end{array}\right.\right. \\
& \left.\langle\psi| F\left||+\rangle+\sum_{n}\right|\left\langle\operatorname{l}_{n} \mid \phi_{n}\right\rangle\right\rangle^{2}\left(E^{\uparrow}-E_{n}\right)=E^{\uparrow} \\
& \langle\psi(H \mid \psi) \leq E \uparrow
\end{aligned}
$$

(4) recall

$$
\begin{aligned}
& \text { e(all } \\
& A_{i}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i\left(s x+\frac{s^{3}}{3}\right)} \\
& \int_{-\infty}^{\infty} A_{i}(x-y) A_{i}(x-i) d x \\
& \int_{-\infty}^{\infty} \frac{1}{(2 \pi)^{2}} e^{-i\left(s(x-y)+\frac{1}{3}^{3}\right)-i\left(t\left(y-y^{\prime}\right)+\frac{-c^{3}}{3}\right)}
\end{aligned}
$$

The y integral

$$
\int_{-\alpha}^{\alpha} \frac{1}{2 \pi} e^{-i(s+t)^{x}} d x=\delta(s+t)
$$

with this the expressim on the last pace becomes

$$
=\frac{1}{2 \pi} \int_{-\infty} d s e^{-i s\left(y-y^{\prime}\right)}=\delta\left(y-y^{\prime}\right)
$$

(5)

$$
\begin{aligned}
& F=-m g \quad V=m g z \\
& -\frac{\hbar}{2 m} \frac{d^{2} \psi}{d z^{2}}+m q z \psi=E T \\
& L C+\quad\left(\frac{2 m^{2} a}{\hbar^{2}}\right)^{1 / 3}\left(z-\frac{E}{m a}\right) \\
& \frac{d \sigma}{d z}=\left(\frac{\left.2 m^{2} g\right)^{\prime 3}}{\hbar^{2}}=\right. \\
& \frac{d^{2}}{d z^{2}}=\left(\frac{d \sigma}{d z}\right)^{2} \frac{d^{2}}{d \sigma l}=\left(\frac{2 m^{2} q^{2}}{\hbar^{2}}\right)^{2 / 3} \frac{d^{2}}{d \sigma}
\end{aligned}
$$

The schrodinga equation becomes

$$
\begin{aligned}
\left(\frac{2 m^{2} q}{\hbar^{2}}\right)^{2 / 3} \frac{d^{2}}{d \sigma^{2}} & =-\frac{2 m}{\hbar^{2}}(E-m a z) \psi \\
& =\frac{2 m^{2} a}{5^{2}}\left(z-\frac{E}{m a}\right) \Psi \\
& =\left(\frac{2 m^{2} a}{\hbar^{2}}\right)^{2 / 3} \sigma \Psi
\end{aligned}
$$

$$
\frac{d^{2}}{d \sigma^{2}} \psi(\sigma)=\sigma \Psi(\sigma)
$$

So

$$
\begin{aligned}
\langle z \mid t\rangle & =N A_{i}(6) \\
& =N A_{i}\left(\left(\frac{\left.2 m^{2} g\right)^{1 / 3}}{\hbar^{2}}\left(z-\frac{E}{m g}\right)\right.\right.
\end{aligned}
$$

where N is a normalizatim constant
(6)

$$
x=\left(\begin{array}{ll}
c t+z & x-i y \\
x+i y & c t-z
\end{array}\right)
$$

a)

$$
\begin{aligned}
\operatorname{det}(x) & =(c t+z)(c t-z)-\left(x^{\prime} x^{\prime}\right)(x+1 y) \\
& =(c t)^{2}-x^{2}-y^{\prime}-z^{2} \\
\operatorname{det}\left(x^{\prime}\right) & =\operatorname{det} A x A^{+}= \\
& =\operatorname{det} A \operatorname{det} x \operatorname{det} A^{+} \\
& =1 \cdot \operatorname{det} x 1 \\
:\left(c t^{\prime}\right)^{2}-\bar{x}^{2} & =(c t)^{2}-\bar{x}^{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
X^{\prime} & =A X A^{+} \quad \operatorname{det} A=\operatorname{det} B=1 \\
X^{\prime \prime} & =B X^{\prime} B^{+} \\
X^{\prime} & =B A \times A^{+} B^{+} \\
& =(B A) \times(B A)^{+}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det} X^{\prime \prime}=\underbrace{\operatorname{det} B}_{1} B \underbrace{}_{1} \operatorname{det} A \operatorname{det} X \underbrace{\operatorname{det} A^{t}}_{1} \underbrace{\operatorname{det}}_{1} B^{t} \\
& (c t)^{\prime \prime}-\bar{x}^{\prime \prime} \cdot \bar{x}^{\prime \prime}=\left((t)^{2}-\bar{x} \cdot \bar{x}\right.
\end{aligned}
$$

c) det $\left(\sigma_{\mu} x\right.$
$\operatorname{det}\left(\sigma_{m} \sum_{V} x^{\nu} \sigma_{v}\right)$
but

$$
\begin{aligned}
& \sigma_{u} \sigma_{u}=I \\
& G_{0} G_{\mu e}=G_{\mu} G_{-}=G_{\mu} \quad \mu=1,2.3 \\
& \sigma_{i} \sigma_{j}=-\sigma_{j} \sigma_{i}=i \varepsilon_{i j n} \sigma_{n} \\
& \operatorname{since} \quad T r\left(\sigma_{\mu}\right)=0 \quad \rho \mu \quad \mu=1,2,3 \\
& \text { and } T \sigma(I)=L \\
& \operatorname{det}\left(\sigma_{\mu} x^{v} \sigma_{v}\right)=2 \sum \delta_{\text {uiv }} x^{v} \\
& =2 x^{\mu}
\end{aligned}
$$

or

$$
x^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\sigma_{\mu} X\right)
$$

