Phys 5742

Homework 4 - Due Friday 2/16

Problem 1:

Let $\mathbf{U}=\left(U_{x}, U_{y}, U_{z}\right)$ and $\mathbf{V}=\left(V_{x}, V_{y}, V_{z}\right)$ be Cartesian components of vector operators. Find all components of a rank $(l=2)$ spherical tensor, T_{m}^{2}, constructed out of the products $U_{i} V_{j}$. (Hint: consider the structure of $\left.Y_{m}^{2}(\theta, \phi)\right)$)

Problem 2:

Write $x y, x z$ and $x^{2}-y^{2}$ as components of a rank 2 spherical tensor. The expectation value

$$
Q=e\langle\alpha, j, j|\left(3 z^{2}-r^{2}\right)|\alpha, j, j\rangle
$$

is called the quadrupole moment. Evaluate

$$
e\langle\alpha, j, m|\left(x^{2}-y^{2}\right)|\alpha, j, j\rangle
$$

in terms of Q for all $m,-j \leq m \leq j$. (hint: use the Wigner-Eckart theorem).

Problem 3:

Show if T_{l}^{m} is a rank l spherical tensor that

$$
\left[J_{x}\left[J_{x}, T_{l}^{m}\right]\right]+\left[J_{y}\left[J_{y}, T_{l}^{m}\right]\right]+\left[J_{z}\left[J_{z}, T_{l}^{m}\right]\right]=l(l+1) T_{l}^{m} .
$$

Hint: Use the infinitesimal form of $U(R) T_{l}^{m} U^{\dagger}(R)=\sum_{n} T_{l}^{n} D_{n m}^{l}(R)$.
Problem 4: Consider the differential equation

$$
\left(\frac{d^{2}}{d x^{2}}-x\right) f(x)=0
$$

Show that the Airy function

$$
A i(x):=\int_{-\infty}^{\infty} \frac{d s}{2 \pi} e^{-i s x-i s^{3} / 3}
$$

is a solution to this differential equation. Hint: consider

$$
\int g(x)\left(\frac{d^{2}}{d x^{2}}-x\right) A_{i}(x) d x=0
$$

for arbitrary well behaved $g(x)$.
Problem 5: Let $V(x)=F|x|$ be a one dimensional confining potential. Find an equation for the energy eigenvalues by using the WKB approximation with suitable boundary conditions at $x=0$.

Problem 6: Use the variational method to estimate the ground state energy of the Hamiltonian of a one-dimensional anharmonic oscillator:

$$
H=\frac{1}{2} p^{2}+\frac{1}{2} x^{2}+\lambda x^{4}
$$

using a trial radial wave function of the form $N(\alpha) e^{-\alpha x^{2}}$ where α is a free parameter. Hint: the Gamma function is useful for computing the integrals.
(1) This transforms luke Y Y 2

$$
\begin{aligned}
& V_{-2}^{2}=\frac{1}{4}\left(V_{x}-i V_{y}\right)^{2} \\
& V_{2}^{-1}=\frac{1}{2}\left(V_{x}-i V_{y}\right) V_{z} \\
& V_{2}^{0}=\frac{1}{4}\left(3 V_{z}^{2}-\overline{V_{\cdot}} \bar{V}\right) \\
& V_{2}^{\prime}=-\frac{1}{2}\left(V_{x}+i V_{y}\right) V_{z} \\
& V_{2}^{2}=\frac{1}{4}\left(V_{x}+i V_{y}\right)^{2}
\end{aligned}
$$

The numesical factor are only up to normalisation

For His problem there are 2 vectors. In thin. case the 2 vectus do not have to commutefor mas reason it is uselut to replace $v_{2}^{ \pm}$by

$$
\begin{aligned}
V_{2}^{ \pm 1}= & \frac{1}{4}(\pm)\left(V_{x} F\left|V_{y}\right| V_{z}+\right. \\
& \frac{1}{4}(\pm) V_{z}\left(V_{x} \mp i V_{y}\right)
\end{aligned}
$$

If we remove the fact $\frac{1}{4}$ we get

$$
\begin{aligned}
& (u v)_{2}^{2}=\left(u_{x}-i u_{y}\right)\left(v_{x}-i v_{y}\right) \\
& (u v)_{2}^{-1}=\left(u_{x}-i u_{y}\right) v_{z}+u_{z}\left(v_{x}-i v_{y}\right) \\
& (u v)_{2}^{0}=\left(3 v_{z} v_{z}-\bar{u} \cdot \bar{v}\right) \\
& (u v)_{2}^{\prime}=-\left(u_{x}+i v_{y}\right) v_{z}-u_{z}\left(v_{x}+i v_{y}\right) \\
& (u v)_{2}^{2}=\left(u_{x}+i u_{y}\right)\left(v_{x}+i v_{y}\right)
\end{aligned}
$$

note that in these expressive all of the U^{\prime} s are cu the right side of the re's.
(2) $Q=e\langle\alpha \jmath \jmath|\left(3 z^{2}-r^{2}\right)|\alpha \jmath j\rangle$
using the result from problem 1

$$
\begin{aligned}
& \dot{x}_{2}^{2}=x^{2}-y^{2}-2 x y i \\
& x_{2}^{2}=x^{2}-y^{2}+2 x y i
\end{aligned}
$$

adding give

$$
\begin{aligned}
& x^{2}-y^{2}=\frac{1}{2}\left(x_{2}^{2}+x_{2}^{-2}\right) \\
& 3 z^{2}-r^{2}=x_{2}^{0}
\end{aligned}
$$

it hollows that

$$
\begin{aligned}
& \begin{array}{l}
\langle\alpha j 1| x_{2}^{0}|\alpha j j\rangle \\
\langle\alpha j m| x_{2}^{2}|\alpha j J\rangle
\end{array}=\frac{c_{j} j_{j}^{2 j}}{c_{2}^{2 j}} \\
& \begin{array}{l}
\langle\alpha 1 \jmath| x_{2}^{0}|\alpha 1 J\rangle \\
\left.\langle\alpha\lrcorner m^{\prime \prime}\left|x_{2}^{-2}\right| \alpha 11\right\rangle
\end{array}=\frac{\begin{array}{ccc}
1 & 2 & 1 \\
1 & 0 & 1
\end{array}}{C_{m}^{1} 2}{ }^{\prime \prime}-2, \\
& \therefore e\langle\alpha \sin |\left(x^{2}-y^{2}\right)|\alpha j \jmath\rangle= \\
& \frac{e}{2}\left(\langle\alpha \operatorname{sim}| x_{2}^{2}|\alpha \jmath \jmath\rangle+\langle\alpha \jmath m| x_{2}^{-2}|\alpha \jmath \jmath\rangle\right)= \\
& \frac{1}{2} \frac{1}{C_{101}^{121}}\left(C_{m 21}^{121}+C_{m-21}^{121}\right) Q
\end{aligned}
$$

note- the numalizatim lactu cancel.
(3) Notch

$$
\begin{aligned}
& U(R) T_{:}^{m} U^{t}(R)=\sum_{m^{\prime}} T_{e}^{m^{\prime}} D_{m^{\prime} m}^{e}(R) \\
& e^{i \bar{J} 0} T_{e}^{m} e^{-i J \cdot 0}=\sum_{m^{\prime}} T_{e}^{m^{\prime}}\left\langle\ell m^{\prime}\right| e^{1}(\ell m\rangle
\end{aligned}
$$

differentiate with respect
to $\bar{\theta}$, set $\theta=$

$$
i\left(\bar{J} T_{e}^{m}-T_{e}^{m} \bar{J}\right)=i \sum T_{e}^{m^{\prime}}\langle\partial m| \bar{J}|\lambda m\rangle
$$

for Ja

$$
\begin{aligned}
& {\left[J_{z} T_{e}^{m}\right]=m T_{e}^{m}} \\
& {\left[J_{ \pm} T_{e}^{m}\right]=\left\{T_{e}^{m^{\prime}}\left\langle\delta m^{\prime} \mid j m \neq 1\right\rangle \sqrt{(f \mp m)(f \pm m-1)}\right.} \\
& {\left[J_{ \pm} T_{e}^{m}\right]=T_{e}^{m \pm 1} \sqrt{(f \pm m)(j \pm m+1)}}
\end{aligned}
$$

next note

$$
\begin{aligned}
& \left.\left[J_{z}\left[J_{z} T_{e}^{m}\right\urcorner\right]=m\left[J_{z} T_{e}^{m}\right]=m^{2} T_{e}^{m}\right] \\
& {\left[J_{\mp}\left[J_{ \pm} T_{e}^{m}\right\urcorner\right)=\left[J_{F} T_{e}^{m \pm 1}\right\urcorner \sqrt{(j \mp m(J \pm m+1)}} \\
& T_{e}^{m} \sqrt{(j \pm(m \pm 1))(j \mp(m \pm 1)+1)} \sqrt{(j \mp m)(J \pm m+1)} \\
& (j \pm m+1)(j \mp m) \\
& T_{e}^{m}(j \pm m+1)(J \mp m) \\
& \left.T_{e}^{m}(f(f+1)-m(m \pm 1))\right)
\end{aligned}
$$

comparing both sides we act

$$
\left[J_{ \pm} T_{e}^{m}\right]=T_{e}^{m \pm} \sqrt{(e \mp m)(e \pm m+1)}
$$

It follows inc ${ }^{+}$

$$
\begin{aligned}
& {\left[J_{z}\left[J_{z} T_{e}^{m}\right]\right]=} \\
& m\left[J_{z} T_{c}^{m}\right]= \\
& m^{2} T_{e}^{m} \\
& {\left[J_{\mp}\left[J_{ \pm} T_{e}^{m}\right]\right]=} \\
& {\left[V_{I} T_{e}^{m \pm 1}\right] \sqrt{\left(f \mp^{m}\right)(j \pm m+1)}} \\
& T_{e}^{m} \sqrt{(1 \pm \pm(m \pm 1))(1 F(m \pm 1)+1} \times \sqrt{(f \mp m)(1 \pm m+1)} \\
& T_{e}^{m}(f \mp m)(j \pm m+1) \\
& \tau_{e}^{m}\left(j^{2}-m^{2}+j F m\right) \\
& \operatorname{Tam}_{a}^{m}(J(y+1)-m(m \pm 1))
\end{aligned}
$$

next note

$$
\begin{aligned}
& {\left[J_{f}\left[J \pm T_{e}^{m}\right\urcorner\right]=} \\
& {\left[J_{x} \mp i J_{y}\left[J_{x} \pm i J_{y},_{e}^{m}\right\urcorner\right]=} \\
& {\left[J_{x}\left[J_{x} T_{c}^{m}\right]\right]+\left[J_{y}\left[J_{y} T_{e}^{m}\right\rceil\right]} \\
& \left(\pm i\left[J_{x}\left[J_{y} T_{y}^{m}\right]\right] F_{i}\left[J_{y}\left[J_{x} T^{m}\right\rceil\right]\right)
\end{aligned}
$$

next we use

$$
\begin{aligned}
& {[A[B C 7]+[C[A B]]+[B[C A]]=0} \\
& \rightarrow \pm i(\underbrace{\left[J_{x}\left[J_{y} T_{e}^{m} \tau\right]+\left[J_{y}\left[T_{e}^{m} J_{x} 7\right]\right)\right.} \\
& -\left[T_{e}^{m}\left[J_{x} J_{y}\right]\right]^{2}= \\
& -:\left[T_{e}^{m} J_{z}\right]= \\
& \text { i }\left[J z T_{e}^{m}\right]= \\
& \text { in } T_{e}^{m} \\
& \rightarrow \pm i m_{e}^{m}=F T_{e}^{m} m \\
& \therefore \quad\left[J \times\left[J \times T_{e}^{m} \eta\right\}+\left[J_{y}\left[J_{y} T_{e}^{m} \eta\right]=\right.\right. \\
& {\left[J_{ \pm}\left[\sigma_{ \pm} T_{e}^{m}\right]\right] \pm m T_{e}^{m}}
\end{aligned}
$$

putting everything togetha

$$
\begin{aligned}
{\left[J_{x}\left[J_{x} T_{e}^{m}\right]\right]+} & {\left[J_{y}\left[J_{y} T_{e}^{m} \imath\right]+\right.} \\
& {\left[\sigma_{z}\left[J_{z} T_{e}^{m}\right]\right]=}
\end{aligned}
$$

$$
\begin{aligned}
& =T_{m}^{\ell}(e(e+1)-m(m \pm 1)) \pm m T_{m}^{e}+m^{2} T_{m}^{e} \\
& =T_{m}^{e}(e(l+1)-m(m \pm 1)+m(m \pm 1)) \\
& =T_{m}^{\ell} l(e+1)
\end{aligned}
$$

which glues the desired result
4)

$$
\begin{aligned}
& \int g(x)\left(\frac{d^{2}}{d x^{2}}-x\right) \int_{-\infty}^{\infty} \frac{d s}{2 \pi} e^{-i\left(s x+\frac{s^{3}}{3}\right)} d x= \\
& \int g(x) \int_{-\infty}^{\infty} \frac{d s}{2 \pi}\left(-s^{2}-x\right) e^{-i\left(s x+\frac{s^{3}}{3}\right)} d x= \\
& \int g(x) \int_{-\infty}^{\infty} \frac{d s}{2 \pi} i \frac{d}{d s}\left(e^{-i\left(s x+\frac{s^{3}}{3}\right)}\right) d x \\
& \left.i \frac{1}{2 \pi} \int g(x) e^{-i\left(s x+\frac{s^{3}}{3}\right)}\right|_{-\infty} ^{\infty}= \\
& \left.i \frac{1}{\sqrt{2 \pi}} \tilde{q}(s) e^{-i s^{3} / 3}\right|_{-\infty} ^{\infty}
\end{aligned}
$$

where $\tilde{g}(s)$ is the Fowsicn Transsum of $g(x)$ which falls of s lon lance ISI
5)

$$
\begin{array}{ll}
P_{C l}^{2}=2 m(E-F x) & x>0 \\
P_{C l}^{2}=2 m(E+F x) & x<0
\end{array}
$$

The wk is quantisatim condition is

$$
\begin{aligned}
& \int_{-\frac{E}{F}}^{0} P_{c l}^{I}(x)+\int_{0}^{\frac{E}{E}} P_{c l}^{I}(x)=\pi\left(n+\frac{1}{2}\right) \hbar \\
& \int_{-\frac{E}{F}}^{0} \sqrt{2 m(E+F x}+\int_{0}^{\frac{E}{F}} \sqrt{2 m(E-F x)}=\hbar\left(n+\frac{1}{2}\right) \pi
\end{aligned}
$$

let $u_{t}=2 m(E+F x) \quad u_{-}=2 m(E-F x)$

$$
\begin{aligned}
& d u_{+}=2 m F d x d u_{-}=-2 m F d x \\
& \int_{0}^{\sqrt{2 m E}} u^{1 / 2} \frac{d u}{2 m F}-\int_{\sqrt{2 m E}}^{0} u^{1 / 2} \frac{d u}{2 m F}=\hbar \pi\left(n+\frac{1}{2}\right) \\
& \frac{2}{3}(\sqrt{2 m E})^{3 / 2} \frac{1}{2 m F}+\frac{2}{3}(\sqrt{2 m E})^{3 / 2} \frac{1}{2 m I^{2}}=\hbar \pi(n-1) \\
& (2 m E)^{3 / 4}=\frac{3}{2} m F \pi \hbar\left(n+\frac{1}{2}\right) \\
& E_{n}=\frac{1}{2 m}\left(\frac{3}{2} m F \pi \hbar\left(n+\frac{1}{2}\right)\right)^{4 / 3}
\end{aligned}
$$

This solution ignores the discontinuity in the potential at the origin.. To treat this note p^{2} and $|x|$ are both even eunctions which means that if $\langle x \mid \psi\rangle$ is a solution so is $\langle-x \mid \psi\rangle$ ore lines conbinatius al the the

$$
\begin{aligned}
& \left\langle x \mid \psi_{2}\right\rangle=\langle x \mid \psi\rangle+\langle-x \mid \psi\rangle \\
& \left\langle x \mid \psi_{0}\right\rangle=\langle x \mid \psi\rangle-\langle-x \mid \psi\rangle
\end{aligned}
$$

The odd one vanishes at o while the even one has vanishing dencuatues at 0 - here the Airy funchors give the exact solution

$$
\left.\varphi(x)=N A_{i}\left(-\frac{2 m^{F}}{\hbar^{1}}\right)^{1 / 3}\left(x+\frac{E}{F}\right)\right)
$$

The boundary condition at 0 means that

$$
-\left(\frac{2 m F}{\hbar^{2}}\right)^{1 / 3}\left(\frac{E}{m}\right)=G_{n}
$$

where σ_{n} is the $n^{+n} 0$ of the Airy function recall $x=0$ is in the physically allowed regin where Ai (σ) orerllates
(6) First compute the
nonamilization intearal

$$
\begin{aligned}
& 1=N^{2} \int_{-\alpha}^{\infty} e^{-2 \alpha x^{2}} d x \\
& u=\sqrt{2 \alpha} x d x=\frac{1}{\sqrt{2 \alpha}} d u \\
& 1=N^{2} \frac{1}{\sqrt{2 \alpha}} \int_{-\alpha}^{\infty} e^{-u^{2}} d u \\
& L e+v=u^{2} d v=2 u d u=2 v^{1 / 2} d u \\
& 1=N^{2} \frac{1}{\sqrt{2 \alpha}} 2 \int_{0}^{\infty} \frac{d v}{2} v^{-\frac{1}{2}} e^{-v} \\
&=N^{2} \frac{1}{\sqrt{2 \alpha}} \int_{0}^{\infty} d v v^{\frac{1}{2}-1} c^{-v} \\
&=N^{2} \frac{1}{\sqrt{2 \alpha}} L^{2}\left(\frac{1}{2}\right)=N^{2} \sqrt{\frac{\pi}{2 \alpha}}
\end{aligned}
$$

Chere I chose to complete the inteqral culing tue Gamma lunctim)

$$
\begin{aligned}
& N=\sqrt[4]{\frac{2 \alpha}{T}} \\
& \langle\psi| H|\psi\rangle=-i \frac{d}{d x} \\
& N^{2} \int e^{-\alpha x^{2}}\left(-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\frac{1}{2} x^{2}+\lambda x^{4}\right) e^{-\alpha x^{2}}=
\end{aligned}
$$

note $\frac{d}{d x} e^{-\alpha x^{2}}=-2 \alpha x e^{-\alpha x^{2}}$

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}} e^{-\alpha x^{2}}=-2 \alpha e^{-\alpha x^{2}}+4 \alpha^{2} x^{2} e^{-\alpha x^{2}} \\
& \langle\psi(1-1| \rangle= \\
& \begin{array}{l}
N^{2} \int_{-\alpha}^{\alpha} e^{-2 \alpha x^{2}}\left(-\frac{1}{2}\left(-2 \alpha+4 \alpha^{2} x^{2}\right)+\frac{1}{2} x^{2}\right. \\
\left.\quad+\lambda x^{4}\right) d x
\end{array}
\end{aligned}
$$

Let $u=\sqrt{2 \alpha} x \quad d u=\sqrt{2 \alpha} d x$

$$
\begin{aligned}
& N^{2} \frac{1}{\sqrt{2 \alpha}} \int_{-\infty}^{\infty} e^{-u^{2}}\left(\alpha-2 \alpha^{2} \frac{u^{2}}{2 \alpha}+\frac{1}{2} \frac{u^{2}}{2 \alpha}+\lambda \frac{u^{4}}{4 \alpha^{2}}\right) \\
& N^{2} \frac{1}{\sqrt{2 \alpha}} \int_{-\alpha}^{{ }_{-\alpha}} e^{-u^{2}}\left(\alpha-\alpha u^{2}+\frac{1}{4 \alpha} u^{2}+\lambda \frac{u^{4}}{4 \alpha^{2}}\right)= \\
& \frac{1}{\sqrt{\pi}}\left(\alpha \int e^{-u^{2}} d u+\left(\frac{1}{4 \alpha}-\alpha\right) \int e^{-u^{2}} u^{2} d u\right. \\
& \\
& +\lambda \frac{1}{4 \alpha^{2}} \int e^{-u^{2}} u^{v} d u
\end{aligned}
$$

To calculate the integrals
note

$$
\begin{aligned}
& \int e^{-\alpha u^{2}} d u=\sqrt{\frac{\pi}{\alpha}} \rightarrow \sqrt{\pi} \\
& \int u^{2} e^{-u^{2}}=-\frac{d}{d \alpha}\left(\sqrt{\frac{\pi}{\alpha}}\right)_{\alpha=1}=\frac{1}{2} \sqrt{\pi} \alpha^{-3 /}=\frac{\sqrt{\pi}}{2} \\
& \int u^{v} e^{-u^{\prime}}=\left(-\frac{d}{d \alpha} \alpha^{2} \sqrt{\frac{\pi}{\alpha}} \alpha=1=\frac{1}{2}\left(\frac{3}{2}\right) \sqrt{\pi} \alpha^{-5 / 1}=\frac{3}{4} \sqrt{\pi}\right.
\end{aligned}
$$

$$
\langle\psi|+|\psi\rangle=\alpha+\frac{1}{2}\left(\frac{1}{4 \alpha}-\alpha\right)+\frac{3 \lambda}{16 \alpha^{2}}
$$

To lind the minimuen evaluate

$$
\begin{aligned}
0 & =\frac{d}{d \alpha}\langle\psi| H|\psi\rangle=1-\frac{1}{2}-\frac{1}{8 \alpha^{2}}-\frac{6 \lambda}{16 \alpha^{3}} \\
& =\frac{1}{2}-\frac{1}{8 \alpha^{2}}-\frac{3}{8} \frac{\lambda}{\alpha^{3}}
\end{aligned}
$$

multipy by $8 \alpha^{3}$ to aet

$$
0=4 \alpha^{3}-\alpha-3 \lambda
$$

we want roots that satisfy

$$
\begin{aligned}
\frac{d^{2}}{d \alpha^{2}} & \langle\psi| H|\psi\rangle \mid=0 \\
& =\frac{1}{4 \alpha^{3}}+\frac{9}{8} \frac{\lambda}{\alpha^{4}}
\end{aligned}
$$

since we are only intcrestar in positive root, lu a wave lunction that lolls oft. - we need to positive root, of $4 \alpha^{3}-\alpha-3 \lambda=0$

Mis is neqative and decreadins a+ $\alpha=0$

The gernesal structure is eitren the red a black line, it is cleas that there is an une positive root α_{t}

$$
\langle\psi| H|\psi\rangle=\frac{1}{2}-\frac{1}{\delta} \alpha_{+}^{2}-\frac{3 \lambda}{\delta \alpha_{+}^{3}}
$$

$\alpha+$ positime rost a

$$
4 \alpha^{3}-\alpha+3 \lambda=0
$$

This can be computcy numenicaliz $f \sim$ a glven value of λ

