Phys 5742
Homework 3-Due Friday 2/9
Problem 1: Use the relation

$$
Y_{l}^{m}(\hat{n})=\sqrt{\frac{2 l+1}{4 \pi}} D_{m 0}^{* l}(R)
$$

where $\hat{\mathbf{n}}=R \hat{\mathbf{z}}$ to integtate a product of three spherical harmonics

$$
\int_{0}^{\pi} \sin (\theta) d \theta \int_{0}^{2 \pi} d \phi Y_{l_{a}}^{m_{a}}(\theta, \phi) Y_{l_{b}}^{m_{b}}(\theta, \phi) Y_{l_{c}}^{m_{c}}(\theta, \phi)
$$

Express your answer in terms of Clebsch Gordan coefficients.
Problem 2: Assume that a Hamiltonian is invariant with respect to rotations about the x and y axes. Show that it must alos be invariant with respect to rotations about the z axis.

Problem 3: Express the spherical harmonics $Y_{m}^{2}(\theta, \phi)$ in term of the Cartesian coordinates, $x / r, y / r, z / r$. Convince yourself that each Y_{m}^{2} is a homogeneous polynomial of degree 2 in these quantities.

Problem 4: The spherical harmonics $Y_{m}^{1}(\hat{\mathbf{r}})$ are simultaneous eigenstates of L^{2} and L_{z} with the eigenvalues $1(1+1)=2$ and m. Use properties of rotations to find linear combinations of these states that are simultaneous eigenstates of L^{2} and L_{y} with eigenvalues 2 and m.

Problem 5: Assume that a spinless particle is bound to a rotationally invariant potential and assume that it is in an eigenstate of L^{2} with eigenvalue $2(2+1)=6$. Show that this state must be degenerate. (this means that there is more than one eigenstate with the same energy eigenvalue).

Problem 6: Using the $\left|n_{+}, n_{-}\right\rangle$basis for the angular momentum states find operators (in terms of $a_{ \pm}$and $a_{ \pm}^{\dagger}$ that raise and lower the eigenvalue j without changing m ?

Homework 3 - solutions
(1) recall $\quad Y_{e}^{m}(\theta \phi)=\sqrt{\frac{2 l+1}{4 \pi}} D_{m_{0}}^{* e}(R)$

$$
\begin{aligned}
& \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi Y_{l_{a}}^{m_{a}}(\theta \phi) Y_{l_{b}}^{m_{b}}(\theta \phi) Y_{P_{c}}^{m_{c}}(\theta d)= \\
& \sqrt{\frac{2 l_{a}+1}{4 \pi}} \sqrt{\frac{2 l_{b}+1}{4 \pi}} \sqrt{\frac{2 \ell_{c}+1}{4 \pi}} \int d R \times 4 \pi \\
& D_{m_{a} 0}^{* l_{c}}(R) D_{m_{b}}^{* l_{b}}(R) D_{m_{c}}^{* / l_{c}}(R)= \\
& \sqrt{\frac{2 e_{a}+1}{4 \pi}} \sqrt{\frac{2 e_{b}+1}{4 \pi}} \sqrt{\frac{2 l_{c}+1}{4 \pi}} \cdot 4 \pi \int d R \\
& \sum C_{m m_{a} m_{b}}^{e l e_{b}}\left(\begin{array}{lll}
e e_{0} l_{s} \\
0 & 0 & 0
\end{array} C_{e^{\prime}}^{e^{\prime}} \begin{array}{l}
\text { e } \\
m_{c} \\
m_{c}
\end{array}\right. \\
& C \begin{array}{cccc}
e^{\prime} & 0 & D_{c} & D^{e^{\prime}} \neq \\
0 & 0 & 0 & m_{m^{\prime}}
\end{array}(R)= \\
& \sqrt{\frac{\left(2 e_{a}+1\right)\left(2 l_{b}+1\right)\left(2 l_{b}+1\right)}{4 \pi}} x \\
& C_{-m_{c} m_{a} m_{s}}^{e_{c} l_{a} m_{s}} C_{c}^{l_{c} l_{a} l_{b}} \begin{array}{c}
0 l_{c} l_{c} \\
0
\end{array} \\
& \text { Cole }
\end{aligned}
$$

(2)

$$
\begin{aligned}
& {\left[J_{z}, H\right]=i\left[\left[J_{x} J_{, 1}\right]_{1}, H\right]=} \\
& -i\left[H\left[J_{x} J_{y}\right]\right]= \\
& -i[\underbrace{\left[H_{1} J_{x}\right.}_{0}]_{1} J_{y}]-i[J_{x} \underbrace{\left.H_{1} J_{y}\right]}_{0}]=0
\end{aligned}
$$

here we used

$$
[A[B C]]+[B[A C]]+[C[B A]]=0
$$

you can check this - it is called the Jacobi 1 dennty
(3)

$$
\begin{aligned}
Y_{2}^{-2}= & \frac{1}{4} \sqrt{\frac{15}{2 \pi}} e^{-21 \phi} \sin ^{2} \theta= \\
& \frac{1}{4} \sqrt{\frac{15}{2 \pi}}\left(\sin \theta(\cos \phi-(\sin \theta))^{2}\right. \\
& \frac{1}{4} \sqrt{\frac{15}{2 \pi}}\left(\frac{x-i y}{r}\right)^{2} \\
Y_{2}^{-1}= & \frac{1}{2} \sqrt{\frac{15}{2 \pi}} e^{-i \phi} \sin \theta \cos \theta= \\
& \frac{1}{2} \sqrt{\frac{\sqrt{3}}{2 r}} \sin \theta(\cos \phi-i \sin \phi) \cos \theta= \\
& \frac{1}{2} \sqrt{\frac{15}{2 \pi}} \frac{(x-i y) Z}{r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
Y_{2}^{0} & =\frac{1}{4} \sqrt{\frac{5}{\pi}}\left(3 \cos ^{2} \theta-1\right) \\
& =\frac{1}{4} \sqrt{\frac{5}{\pi}}\left(\frac{3 z^{2}-r^{2}}{r^{2}}\right) \\
Y_{2}^{\prime} & =-\frac{1}{2} \sqrt{\sqrt{\frac{1}{2 \pi}}} e^{i \phi} \sin \theta \cos \theta= \\
& =-\frac{1}{2} \sqrt{\frac{15}{21}} \sin \theta(\cos \phi+i \sin \varphi) \cos \theta \\
& =-\frac{1}{2} \sqrt{\frac{15}{2 \pi}} \frac{(x+i \varphi) z}{5^{2}} \\
Y_{2}^{2} & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} e^{2 i \phi} \sin ^{2} \theta \\
& =\frac{1}{4} \sqrt{\frac{15}{2 \pi}}(\sin \theta(\cos \varphi+i \sin \phi))^{2} \\
& =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \frac{(x+i \theta)^{2}}{52}
\end{aligned}
$$

These are hom oyemeurs pormuonials in \bar{r} / r of dearec $e=2$
(4) consida

$$
\begin{aligned}
& J_{y} u^{+}\left(j_{\mu} \mu\right)=u^{+} J_{z}|s \mu\rangle \\
& =\mu u^{+}|f e e\rangle
\end{aligned}
$$

multirly by U

$$
u J_{y} u^{t}|s \mu\rangle=\mu(\delta \mu\rangle
$$

$$
=J_{z}|f \mu\rangle
$$

we niea to find $U(R)$
satislyins
$u(R) J_{y} u^{\dagger}(R)=\sum J_{i} R_{i r}=J_{z}$

This correspmes
tu a rotatim
about tne x
axis by - $\quad \pi / 2$
$R_{x}\left(-\frac{\pi}{2}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$
$|f \mu\rangle_{y}=U\left(R_{y}\left(-\frac{\pi}{2}\right)\right)\left|g \mu_{z}\right\rangle$
(5) Assume

$$
\begin{aligned}
0 & =[H, \bar{J}] \quad \bar{J}=\bar{L}+\bar{S}=\bar{L}+\bar{O}=\bar{L} \\
& =[H, \bar{L}]
\end{aligned}
$$

It lollows that $\left[H, L^{2}\right]=0$

$$
L^{2}|\psi\rangle=2(2+1)|\psi\rangle
$$

mis means

$$
\begin{aligned}
|\psi\rangle= & |2-2\rangle\langle 2-21 \psi\rangle+ \\
& |2-1\rangle\langle 2-11 \psi\rangle+ \\
& 120\rangle\langle 201 \psi\rangle+ \\
& 121\rangle\langle 21 \mid \psi\rangle^{+}+ \\
& 122\rangle\langle 22 \mid \psi\rangle
\end{aligned}
$$

It lollows that $L^{+}|\psi\rangle$ or $L|\psi\rangle$ is non 0 , independent of $|\psi\rangle$ an an eluenstate ol L^{2} with elqenvalue

$$
2\left(2^{+1}\right)=6
$$

(6) Recall $n_{t}= \pm \pm \mu$

To increase of and not change μ

$$
\begin{array}{ll}
n_{+} \rightarrow n_{+}+1 & n_{+}+n_{-} \rightarrow n_{+}+n_{-}+2 \\
n_{-}-n_{-}+1 & n_{+}-n_{-} \rightarrow n_{+}-n_{-}
\end{array}
$$

mus means

$$
\begin{aligned}
& \left|n_{+}^{+1} n_{-}+1\right\rangle= \\
& a_{+}^{+} a_{-}^{+}\left|n_{+} n_{-}\right\rangle \sqrt{\left(n_{+}+1\right)\left(n_{-}+1\right)} \\
& \theta=a_{+}^{+} a_{-}^{+} \sqrt{\left(n_{+}+1\right)\left(n_{-}+1\right)}
\end{aligned}
$$

