Phys 5742 Homework 3 - Due Friday 2/9

Problem 1: Use the relation

$$Y_l^m(\hat{n}) = \sqrt{\frac{2l+1}{4\pi}} D_{m0}^{*l}(R)$$

where $\hat{\mathbf{n}} = R\hat{\mathbf{z}}$ to integrate a product of three spherical harmonics

$$\int_0^{\pi} \sin(\theta) d\theta \int_0^{2\pi} d\phi \, Y_{l_a}^{m_a}(\theta,\phi) Y_{l_b}^{m_b}(\theta,\phi) Y_{l_c}^{m_c}(\theta,\phi)$$

Express your answer in terms of Clebsch Gordan coefficients.

Problem 2: Assume that a Hamiltonian is invariant with respect to rotations about the x and y axes. Show that it must also be invariant with respect to rotations about the z axis.

Problem 3: Express the spherical harmonics $Y_m^2(\theta, \phi)$ in term of the Cartesian coordinates, x/r, y/r, z/r. Convince yourself that each Y_m^2 is a homogeneous polynomial of degree 2 in these quantities.

Problem 4: The spherical harmonics $Y_m^1(\hat{\mathbf{r}})$ are simultaneous eigenstates of L^2 and L_z with the eigenvalues 1(1+1) = 2 and m. Use properties of rotations to find linear combinations of these states that are simultaneous eigenstates of L^2 and L_y with eigenvalues 2 and m.

Problem 5: Assume that a spinless particle is bound to a rotationally invariant potential and assume that it is in an eigenstate of L^2 with eigenvalue 2(2+1) = 6. Show that this state must be degenerate. (this means that there is more than one eigenstate with the same energy eigenvalue).

Problem 6: Using the $|n_+, n_-\rangle$ basis for the angular momentum states find operators (in terms of a_{\pm} and a_{\pm}^{\dagger} that raise and lower the eigenvalue j without changing m?.

Homework 3 - solutions

 $V_{2}^{0} = \frac{1}{4} \sqrt{\frac{5}{\pi}} (3 \cos^{2} 6 - 1)$ $= \frac{1}{4} \sqrt{\frac{5}{\pi}} \left(\frac{3Z^{\prime} - r^{2}}{r^{2}} \right)$ $Y'_2 = -\frac{1}{2}\sqrt{\frac{15}{2\pi}} e^{i\varphi} SINGCOJU =$ $= -\frac{1}{2} \sqrt{\frac{15}{2\pi}} SING(OSP+iSINP) \cos \theta$ $= -\frac{1}{2} \sqrt{\frac{15}{211}} \frac{(X+iY)Z}{52}$ $Y_{2}^{2} = \frac{1}{4} \sqrt{\frac{15}{2\pi}} e^{2i\varphi} Sir^{2} \Theta$ = $\frac{1}{4}\sqrt{2\pi} (sing(carP+ising))^2$ $= \frac{1}{4} \sqrt{\frac{15}{2\pi}} \frac{(\chi + i\chi)^2}{\Gamma^2}$ These are homogeneous polynomials in Fir of degree R=2

