29:5742 Homework 11

 Due 4/261. Dirac Equation: Consider an equation of the form

$$
i \hbar \frac{\partial}{\partial x^{0}} \psi(x)=(-i \hbar \boldsymbol{\alpha} \cdot \boldsymbol{\nabla}+\beta m c) \psi(x)
$$

where $\boldsymbol{\alpha}$ and β are constant Hermitian matrices
a Find conditions on $\boldsymbol{\alpha}$ and β for the solution $\psi(x)$ to satisfy the Klein Gordon equation.
b. Show that the matrices that solve part a must be even dimensional.
c. Show that the conditions from part a cannot be satisfied using 2×2 matrices.
2. Show, using explicit Poincaré transformations, that time translation can be expressed as a finite combination of space translations and rotationless Lorentz transformations.
3. Show for

$$
\gamma_{\mu}=\left(\begin{array}{cc}
0 & \sigma_{\mu} \\
\tilde{\sigma} & 0
\end{array}\right)
$$

where $\tilde{\sigma}=(I,-\boldsymbol{\sigma})$ satisfies

$$
\gamma_{\mu} \gamma_{\nu}+\gamma_{\nu} \gamma_{\mu}=-2 \eta_{\mu \nu}
$$

4. Compute the anticommutator

$$
\gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}
$$

5. Show that

$$
v(p)=S(B(p)) v_{+}(0)
$$

where

$$
v_{+}(0)=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)
$$

is a negative energy solution of the Dirac equation.
6. Show that

$$
\left(\sum_{\mu} \gamma_{\mu} p^{\mu}-m c I\right)\left(\sum_{\nu} \gamma_{\nu} p^{\nu}+m c I\right)=0
$$

This means that it is possible to find solutions to the soltions to the Dirac equation by applying $\left(\sum_{\mu} \gamma_{\mu} p^{\mu}+m c I\right)$ to any constant 4 component vector.

