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Abstract
A discrete formulation of the real-time path integral as the expectation value of a functional of

paths with respect to a complex probability on a sample space of discrete valued paths is explored.

The formulation in terms of complex probabilities is motivated by a recent reinterpretation of the

real-time path integral as the expectation value of a potential functional with respect to a complex

probability distribution on cylinder sets of paths. The discrete formulation in this work is based

on a discrete version of Weyl algebra that can be applied to any observable with a finite number

of outcomes. The origin of the complex probability in this work is the completeness relation.

In the discrete formulation the complex probability exactly factors into products of conditional

probabilities and exact unitarity is maintained at each level of approximation. The approximation

of infinite dimensional quantum systems by discrete systems is discussed. The method is illustrated

by applying it to scattering theory and quantum field theory. The implications of these applications

for quantum computing is discussed.
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I. INTRODUCTION

Quantum computing has become a topic of current research because of its potential for
solving problems that are not accessible using digital computers. Quantum computations
involve preparing an initial state, evolving it in real time, and performing a measurement
at a later time; repeating this for a statistically significant number of measurements. An
important step in this process is evolving the prepared initial state using real-time evolution.
Real-time path integrals represent unitary time evolution as an integral over a functional of
classical paths.

Path integrals are formally derived using the Trotter product formula [1], which expresses
real-time evolution as the limit of a product of time evolution over small time steps, making
approximations that preserve unitarity and become exact in the limit of small time steps.
These are the same steps that quantum computing algorithms are designed to replicate.
Real quantum computers are discrete quantum systems with a finite number of qubits.
Path integral treatments of real-time evolution in discrete systems can be interpreted as
models of quantum computers.

Feynman’s interpretation of time evolution as an integral over paths follows by insert-
ing integrals over complete sets of intermediate states at each time step and performing
integrals over the intermediate momentum variables. What remains is the limit of prod-
ucts finite-dimensional Fresnel integrals that are interpreted as integrals of a functional of
classical paths. This interpretation has great intuitive appeal and is useful for generating
perturbative expansions and other results. There are well-known difficulties with the inter-
pretation of time evolution as an integral over paths. The integrand involves oscillations
that are not absolutely integrable, and the volume element involves an infinite product of
complex quantities. In addition the “action” functional that appears in the integrand has
finite difference approximations of derivatives of the paths, where ∆x does not get small as
∆t → 0. The problem with the integral interpretation of the path integral is that there is
no positive countably additive measure on the space on paths. This is only a problem with
interpretation since the Trotter limit exists independent of the absence of an interpretation
as an integral over paths.

An alternative interpretation [2][3][4] was recently introduced that replaces the integral
over paths by the expectation value of a functional of paths with respect to a complex
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probability on cylinder sets of paths. The concept of complex probabilities is neither intuitive
or familiar, however in the Euclidean (imaginary time) case there is a path measure which
can alternatively be interpreted as a probability measure. When imaginary-time evolution
is replaced by real-time evolution there is no countably additive positive measure on the
space of paths and the probabilities become complex. The result of [2][3][4] is that by
replacing Lebesgue integration over intermediate states by Henstock [5][6] integration, which
can be used to treat products of the Fresnel integrals, it is possible to make mathematical
sense of the complex probability interpretation, which results in a global solution of the
Schrödinger equation and a unitary one-parameter time-evolution group. This provides a
rigorous reinterpretation of real-time path integrals as an average over a collection of classical
paths, as suggested by Feynman.

In the real-time case the Gaussian integrals over momenta are replaced by Fresnel integrals
which are not absolutely integrable. The Henstock integral is an adaptive generalization
of the Riemann integral that performs the cancellation of oscillating quantities in Fresnel
integrals before adding them, resulting in finite integrals. For Gaussian Fresnel integrals the
Henstock integral gives the same result that is obtained using contour integration. When
used in real-time path integrals the integrals over the intermediate spatial coordinates are
approximated by the generalized Riemann sums, and paths that have values in sequences of
these intervals at different time slices define the cylinder sets of paths. In this interpretation
a complex probability is associated with free time evolution of the paths in each cylinder set.
The resulting complex probability has most of the properties of a real probability, except
that it is not positive and countable additivity is replaced finite additivity.

The purpose of this paper is to further explore application based on the complex probabil-
ity interpretation of the path integral. While reference [7] was focused on quantum systems
that act on infinite dimensional Hilbert spaces, this work develops the complex probability
interpretation on finite (M) dimensional Hilbert spaces. The finite dimensional case is more
closely related to quantum algorithms. In the finite dimensional case the complex probabil-
ities exactly factor into products of conditional probabilities at each time step. Paths are
identified with ordered sequences of discrete eigenvalues of quantum observables at differ-
ent intermediate times. This has the property that there are a finite number of cylinder
sets associated with a finite sequence of time slices. An alternative quantum mechanical
interpretation is to treat the sequence of eigenvalues as labels for an ordered sequence of
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quantum mechanical transition probability amplitudes that result from the dynamics be-
tween each time step. The complex probabilities used in this application are due to the
completeness sums over intermediate states. Systems with continuous degrees of freedom,
which are treated in [7], can be approximated as limits of discrete systems.

Below is a brief outline of the structure of this paper. The ultimate goal is to illustrate by
example how discrete methods can in principle be used to perform calculations of scattering
observables and the dynamics of quantum fields on a quantum computer. The approach
of this work is bottom up in the sense that the continuum dynamics is treated as the
limiting case of a sequence of discrete models. Real time evolution of systems on finite
dimensional Hilbert spaces is formulated using a path integral representation. Even for these
finite dimensional systems there is no countably additive positive measure on the space of
paths. In order to address this situation and retain the interpretation of the dynamics as an
average over a space of paths, the formal path integral is replaced by the expectation value
of a “potential functional” of paths with respect to a complex probability distribution on
cylinder sets of paths. This reinterpretation of the path integral was developed in [2][3][4].
In the continuum case complex probability densities are related to products of free particle
transfer matrices. While the Fresnel integrals that appear in these transfer matrices are not
Riemann integrable, they can be computed using an adaptive generalization of the Riemann
integral due to Henstock, which is used to define the complex probabilities. The advantage
of the application to discrete systems is that the Fresnel integrals are replaced by finite sums.
Since the complex probabilities play a prominent role in this work, their essential properties
are discussed briefly in the next section. The general treatment of discrete systems is in
discussed in section three. The starting point is a general observable with a finite number of
outcomes. It is used, following a method due to Schwinger, to construct an irreducible pair
of unitary operators; one commuting with the original observable and one complementary
operator with the property that any operator in the Hilbert space can be expressed as a finite
degree polynomial in both operators. The path integral representation of the time evolution
operator for these discrete systems as the expectation value of a potential functional on
cylinder sets of discrete valued paths is developed in section five. The discrete form has
the advantage that the complex probability associated with N time steps exactly factors
into a product of conditional probabilities for single time steps. This factorization is used to
exactly replace the sum over a large number of paths by powers of a finite dimensional matrix.
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While this factorization is already useful, quantum computers are normally formulated on
a Hilbert space that is generated by tensor products of qubits. After a short discussion
contrasting the difference between classical and quantum computers, the formulation of the
discrete path integral in section five is expressed in terms of qubits. This is achieved by
starting with an observable on a N = 2L dimensional Hilbert space. The irreducible pair of
unitary operators is expressed in terms of a collection of L pairs of complementary unitary
operators that act on individual qubits. The elementary unitary operators can be identified
with standard quantum gates.

Most problems of interest for quantum computing, like scattering and the dynamics of
quantum fields, involve operators with a continuous rather than discrete spectrum. The
approximation of the of quantum systems on infinite dimensional Hilbert spaces is treated
as the limit of finite dimensional systems discussed in sections five and seven. The resulting
formulation of the real-time path integral is given in section eight. The application to a
simple model of a particle scattering off of a repulsive Gaussian potential is discussed in
the first appendix. The calculations utilize time-dependent methods which involve strong
limits. Narrow wave packets in momentum are used to extract sharp momentum transition
matrix elements. The second appendix develops the application of these methods to local
field theories. For field theories an additional discretization is needed for computations. In
this appendix a wavelet basis is used to represent the field in terms of an infinite number
of discrete modes. The wavelet representation is an exact representation of the field that
replaces fields as operator valued distributions by an infinite collection of well-defined, almost
local, canonically conjugate pairs of operators. In this representation singular products of
fields are replaced by infinite sums of products of well-defined operators. The representation
has natural volume and resolution truncations. Computations require truncations to a finite
number of degrees of freedom. The discrete path integral methods are used to compute the
time evolution of a ϕ4(x) field with a Hamiltonian truncated to two modes. While this is a
drastic truncation, it illustrates how these discrete methods can used to model the dynamics
of fields.
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II. COMPLEX PROBABILITIES

A complex probability system is defined by a sample set S and a complex valued function
P on subsets of S with the properties

P (S) = 1. (1)

P (Si) + P (Sci ) = 1 (2)

where P (Si) is the complex probability assigned to the subset Si of S and Sci is the comple-
ment of Si in S. For a finite set of non-intersecting subsets of S

Si ∩ Sj = ∅ , i ̸= j P (∪Si) =
∑
i

P (Si). (3)

In the applications that follow the sample set will be a collection of “paths” that take on
discrete values at different times. The relevant subsets Si are the sets of paths whose values
take on specific discrete values at finite collections of times between 0 and t. Since P (Si)
is complex, equation (3) cannot be extended to countable non-intersecting subsets, which is
where complex probabilities differ from ordinary probabilities [8][2].

The extension of the notion of complex probabilities to paths with continuous values
based on the Henstock integral [5][6][9], was used in [3][4]. The extension of the integral to
continuously infinite dimensional path spaces is discussed in [2].

III. SCHWINGER’S DISCRETE WEYL ALGEBRA

This section reviews Schwinger’s [10] method of constructing an irreducible algebra of
complementary unitary operators for quantum systems of a finite number of degrees of free-
dom. This construction generates a finite degree of freedom version of the Weyl (exponential)
form of the canonical commutations relations. This algebra can be used to build discrete
models of any finite quantum system.

Let X be a quantum observable with M orthonormal eigenvectors |m⟩ associated with
measurement outcomes xm. X acts on an M dimensional complex Hilbert space H. The
eigenvectors of X are a basis on H: :

X|m⟩ = xm|m⟩ m = 1, · · · ,M. (4)
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Schwinger defines a unitary operator U on H that cyclically shifts the eigenvectors of X:

U |m⟩ = |m+ 1⟩ m < M U |M⟩ = |1⟩. (5)

The labels m on the eigenvectors are treated as integers mod M so 0 is identified with M ,
1 with M + 1 etc.. Since M applications of U leaves all M basis vectors, |m⟩, unchanged, it
follows that UM = I. Since Uk|m⟩ are independent for all k < M , there are no lower degree
polynomials in U that vanish, so P (λ) = λM − 1 = 0 is the characteristic polynomial of U .
The eigenvalues λ of U are the M roots of 1:

λ = um = e
2πmi
M (6)

with orthonormal eigenvectors |um⟩:

U |um⟩ = um|um⟩ (7)

⟨um|un⟩ = δmn. (8)

The normalization (8) does not fix the phase of the |un⟩ which will be chosen later. Both
UM = I and uMn = 1 imply that

0 = (UM − I) = 1
uMn

(UM − I) = ( U
un

)M − I =

( U
un

− I)(I + U

un
+ ( U

un
)2 + · · · + ( U

un
)M−1). (9)

Since this expression is identically zero and (um
un

− 1) ̸= 0 for m ̸= n it follows that

I + U

un
+ ( U

un
)2 + · · · ( U

un
)M−1 = c|un⟩⟨un| (10)

for some constant c. Applying (10) to |un⟩ implies that the constant c = M . This results
in an expression for the projection operator on each eigenstate of U as a degree M − 1
polynomial in U

|un⟩⟨un| = 1
M

M∑
m=1

( U
un

)m = 1
M

M−1∑
m=0

( U
un

)m. (11)

Using (11) it follows that
⟨k|un⟩⟨un|k⟩ =

1
M

M−1∑
m=0

⟨k|( U
un

)m|k⟩ =
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1
M

M−1∑
m=0

( 1
un

)m⟨k|k +m⟩

= 1
M
. (12)

This means that for any k and n that

|⟨k|un⟩| = 1√
M
. (13)

The interpretation is that if the system is prepared in any eigenstate of U and X is subse-
quently measured, then the probability of measuring any of the eigenvalues of X is the same,
(1/M). This means that all of the information about the identity of the initial eigenstate
of U is lost after measuring X. This is the condition for the observables X and U to be
complementary.

It is convenient to choose the phase of each |un⟩ by

⟨M |un⟩ = ⟨un|M⟩ = 1√
M
. (14)

It follows from (14) and (11) that

⟨k|un⟩⟨un|M⟩ = ⟨k|un⟩
1√
M

=

1
M

⟨k|
M∑
m=1

u−mn |m⟩ = 1
M
u−kn =

1
M
e−2πink/M . (15)

Multiplying (15) by
√
M shows that the phase convention (14) fixes the inner product ⟨k|un⟩

for all k ̸= M :
⟨k|un⟩ = 1√

M
e−2πink/M . (16)

Schwinger defines another unitary operator, V , that shifts the eigenvectors of U cyclically,
but in the opposite direction

V |un⟩ = |un−1⟩, n ̸= 1, V |u1⟩ = |uM⟩. (17)

The same methods, with U replaced by V , give

V M = I (18)
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V |vm⟩ = vm|vm⟩ vm = e
2πim
M (19)

|vn⟩⟨vn| = 1
M

M−1∑
m=0

( V
vn

)m = 1
M

M∑
m=1

( V
vn

)m (20)

and for unit normalized |vn⟩
|⟨uk|vn⟩| = 1√

M
. (21)

It is convenient to choose the phase of |vn⟩ by the condition

⟨uM |vn⟩ = 1√
M
. (22)

then (20) and the orthonormality of the |uk⟩’s give

⟨uM |vn⟩⟨vn|uk⟩ = ⟨vn|uk⟩
1√
M

=

1
M

M−1∑
m=0

v−mn ⟨um|uk⟩ = 1
M
v−kn . (23)

Multiplying (23) by
√
M gives

⟨vk|un⟩ = 1√
M
e−2πink/M . (24)

Comparing (16) and (24) it follows that

|vk⟩ =
M−1∑
m=0

|um⟩⟨um|vk⟩ =

M−1∑
m=0

|um⟩
e2πimk/M
√
M

=

M−1∑
m=0

|um⟩⟨um|k⟩ = |k⟩, (25)

so, because of the phase choices, the operators X and V have the same eigenvectors.
The spectral expansion of V , the identification (25) of |vk⟩ with |k⟩ and the definition (5)

of U imply that the unitary operators U and V satisfy

UV = U
M=−1∑
m=0

|vm⟩e
i2πm
M ⟨vm| =

M−1∑
m=0

|vm+1⟩e
i2πm
M ⟨vm| =

M−1∑
m=0

|vm+1⟩e
i2πm
M ⟨vm+1|U =
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M−1∑
m=0

|vm+1⟩e
i2π(m+1)

M e−
2πi
M ⟨vm+1|U =

e−
2πi
M V U. (26)

U and V generate a complete set of operators in the sense that that any operator on the
Hilbert space can be expressed as a degree (M−1)×(M−1) polynomial these two operators.
Note that m− k applications of (5) give Um−k|vk⟩ = |vm⟩. Using this with (20) gives

|vm⟩⟨vk| = Um−k|vk⟩⟨vk| =

1
M

M−1∑
n=0

e−2πink/MUm−kV n. (27)

The order of the U and V operators can be changed using multiple applications of (26):

UmV n = Um−1V nUe−
2nπi
M = Um−2V nU2e−

4nπi
M =

· · · = V nUme−
2mnπi

M . (28)

Using (28) in (27) gives
|vm⟩⟨vk|

1
M

M−1∑
n=0

e−2πink/MV nUm−ke−
2(m−k)nπi

M =

1
M

M−1∑
n=0

e−2πimk/MV nUm−k. (29)

A general operator O can be expressed in terms of its matrix elements in a basis

O =
M−1∑
m,k=0

|vm⟩⟨vm|O|vk⟩⟨vk| =

M−1∑
m,k=0

⟨vm|O|vk⟩|vm⟩⟨vk| =

1
M

M−1∑
m,n,k=0

e−2πink/M⟨vm|O|vk⟩Um−kV n =

1
M

M−1∑
m,n,k=0

e−2πimn/M⟨vm|O|vk⟩V nUm−k. (30)
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These equations have the form

O =
M−1∑
m,n=0

cmnU
mV n =

M−1∑
m,n=0

dmnV
mUn (31)

which is the discrete Weyl representation of O. If O commutes with U then, using (28),

0 =
M−1∑
mn=0

cmn[UmV n, U ] =

M−1∑
mn=0

cmnU
m+1V n(e2πin/M − 1) (32)

which requires n = M or 0. This means O is independent of V . Similarly if O commutes
with V it must be independent of U . It follows that any operator that commutes with both
U and V is a constant multiple of the identity. This means that the operators U and V are
an irreducible set of unitary operators.

IV. PATH INTEGRALS FOR FINITE DIMENSIONAL SYSTEMS

This section considers a general system of a finite number, M , of degrees of freedom. X
is the observable of interest. It evolves under the influence of a Hamiltonian H which is a
Hermitian matrix on the M -dimensional Hilbert space. A measurement of X gives one of its
eigenvalues, xn. The M eigenvectors of X are chosen to be orthonormal. The notation, |n⟩,
1 ≤ n ≤ M is used to label these eigenvectors. X is analogous to a “coordinate” operator
in this setting, but in principle it can be any Hermitian operator on H.

The quantity of interest is the probability amplitude for a transition from an initial
eigenstate of |ni⟩ of X to a final eigenstate |nf⟩ after time t. This is given by the matrix
element of the unitary time evolution operator

⟨nf |e−iHt|ni⟩. (33)

In this section (33) is expressed as the expectation value of a “functional of paths” with
respect to a complex probability on a space of paths.

Following the construction in the previous section irreducible pairs of unitary operators U
and V can be constructed from X. The eigenvectors |n⟩ of V are identical to the eigenvectors
of X, while the eigenvectors |m̄⟩ of U are complementary in the sense that

|⟨u|m̄⟩|2 = 1
M
. (34)
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U satisfies
U |n⟩ = |n+ 1⟩ U |n̄⟩ = |n̄⟩ei 2πn

M , (35)

V satisfies
V |n̄⟩ = |n̄− 1⟩ V |n⟩ = |n⟩ei 2πn

M (36)

and
V U = UV ei

2π
M . (37)

The inner product of the eigenvectors of these complementary operators is

⟨n|m̄⟩ = e−imnϕ√
M

. (38)

The time-evolution operator can be expressed as the N th power of a unitary transfer
matrix T :

e−iHt = TN T = e−iH∆t where ∆t = t/N. (39)

Since the pair of operators U and V is irreducible, T or H can be expressed as degree
(M − 1) × (M − 1) polynomials in U and V using (31):

T =
∑
mn

tmnU
mV n H =

∑
mn

hmnU
mV n. (40)

The quantities tmn and hmn are complex valued functions of two discrete variables. The
eigenvalues of X can be taken as one of the variables. It is useful to define another Hermitian
operator P that has the same eigenvectors as U with eigenvalues pn analogous to the relation
between X and V :

P |m̄⟩ = pm|m̄⟩. (41)

The eigenvalues xn and pm will be referred to as “coordinates” and “momenta” for the pur-
pose of illustration, although in general they have no relation to coordinates and momenta.
In this section the choice of the eigenvalues, pm, is not important - all that is used are the
eigenvectors, |m̄⟩. Matrix elements of the transfer matrix in a mixed (x, p) basis can be
computed using (35), (36) in (40):

⟨n̄|T |m⟩ = ⟨n̄|m⟩T̃nm (42)

where the numerical coefficients T̃nm are

T̃nm =
∑
kl

tkle
−2πi (nk−ml)

M . (43)
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Mixed matrix elements of the Hamiltonian have a similar form

⟨n̄|H|m⟩ = ⟨n̄|m⟩H̃nm H̃nm =
∑
kl

hkle
−2πi (nk−ml)

M . (44)

Changing the “momentum” |m̄⟩ basis back to the “coordinate” |n⟩ basis gives

⟨k|T |m⟩ =
∑
n

⟨k|n̄⟩⟨n̄|m⟩T̃nm (45)

and
⟨k|H|m⟩ =

∑
n

⟨k|n̄⟩⟨n̄|m⟩H̃nm. (46)

Matrix elements of the time evolution operator in the coordinate basis can be expressed,
using representation (45-46) in (39), as

⟨kf |e−iHt|ki⟩ = ⟨kf |[e−iHt/N ]N |ki⟩ =∑
k1···kN

⟨kf |T |kN⟩⟨kN |T |kN−1⟩ · · · ⟨k2|T |k1⟩⟨k1|T |ki⟩ =

∑
k1···kN

⟨kf |n̄N⟩⟨n̄N |kN⟩⟨kN |n̄N−1⟩⟨n̄N−1|kN−1⟩ · · ·

⟨k3|n̄2⟩⟨n̄2|k2⟩⟨k2|n̄1⟩⟨n̄1|ki⟩×

T̃nNkN T̃nN−1kN−1 · · · T̃n2k2T̃n1ki . (47)

The time step, t/N , appears in the coefficients T̃nmkm . These are complex numbers.
If the T̃nmkm are all set to 1 then what remains after performing the completeness sums

is the overlap of the final “coordinate” with the initial “coordinate”, ⟨kf |ki⟩ = δkf ,ki . An
additional sum over ki (resp kf ) or gives 1, independent of kf (resp ki). This motivates the
definition of the complex probability

PN(kf ;nN , kN , · · ·n1, k1) :=

⟨kf |n̄N⟩⟨n̄N |kN⟩⟨kN |n̄N1⟩⟨n̄N−1|kN−1⟩
...

⟨k3|n̄2⟩⟨n̄2|k2⟩⟨k2|n̄1⟩⟨n̄1|k1⟩ (48)

which by completeness satisfies∑
n1,k1···nNkN

PN(kf ;nN , kN , · · ·n1, k1) = 1 (49)
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for any |kf⟩. PN assigns a complex weight to a pair of eigenvalues of X and P at each of N
time steps.

The exact time evolution can be expressed using the Trotter product formula

e−iHt = lim
N→∞

(e−iHt/N)N = lim
N→∞

(I − iHt/N)N

where only the first order term in the exponent contributes in the limit N → ∞. In the
small ∆t = t/N limit

⟨m̄|T |n⟩ ≈ ⟨m̄|I − iH∆t|n⟩ =

⟨m̄|n⟩(1 − iH̃mn∆t) ≈ ⟨m̄|n⟩e−iH̃mn∆t. (50)

In this expression H̃mn is an ordinary function of pm and xn. If the quantum Hamiltonian
H is expressed with the X operators to the right of the P operators, this would be the
Hamiltonian with these operators replaced by the “coordinates” and “momenta”. It is the
analog of a classical phase space Hamiltonian.

It follows from (42) and (50) that

T̃nk ≈ e−iH̃(pn,xk)∆t

and
T̃nNkN T̃nN−1kN−1 · · · T̃n2k2T̃n1ki ≈ e−i

∑
m H̃(pnm ,xkm )∆t (51)

which is a functional of a classical “phase space” path p(t), x(t) with endpoints at x(0) and
x(t), where p(t), x(t) can take on M discrete values, pn and xm at each time step. This is
classical in the sense that even though P and X do not commute, H̃(pn, xm) is an ordinary
function of the eigenvalues pn and xm. A cylinder set of paths is a set of M-valued functions
p(t) and x(t) that take on one of the M possible eigenvalues of P and X at each of N time
slices, subject to initial and final values of the x variable. With this definition of cylinder
set

PN(kf ;nN , kN , · · ·n1, k1) (52)

can be interpreted as a complex probability associated with the cylinder set of “phase space”
paths that start at xk1 , end at xkf and have values pnm , xkm at the mth time slice.

From a quantum mechanical point of view an M -valued path can be thought of as an or-
dered sequence of quantum transition amplitudes that alternate between states of irreducible
pairs of observables.
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Combining (47,48 and 50) gives

⟨kf |e−iHt|ki⟩ ≈∑
nN ,kN ,···n1,k1

PN(kf ;nN , kN , · · ·n1, k1)e−i
∑

m H̃(xnmpkm )∆tδk1ki (53)

which approximates the transition probability amplitude as the expectation value of a func-
tional of the “classical” Hamiltonian H̃(x, p) over cylinder sets of “paths in phase space”.
Here the “coordinate” paths have fixed endpoints at 0 and t, while the “momentum” paths
are unconstrained. In this case the complex probability interpretation is a consequence of
the completeness relation.

In general the number of cylinder sets that must be summed over is prohibitively large,
(∼ M2N). The definition (48) implies that the complex probability can be factored into
products of one-step probabilities

PN(kf ;nN , kN , · · ·n1, k1) =
N∏
i=1

⟨ki+1|n̄i⟩⟨n̄i|ki⟩ :=

∏
i

P (ki+1;ni, ki), kN+1 = kf . (54)

In this case
⟨kf |e−iHt|ki⟩ =∑

nN ,kN ,···n1,k1

∏
i

(
P (ki+1;ni, ki)e−iH̃(xnipki )∆t

)
δk1ki (55)

where kN+1 = kf . This reduces the computation of (53) to computing the N th power of an
M ×M matrix.

The formalism discussed above can be applied to any Hamiltonian on the M -dimensional
Hilbert space. If the Hamiltonian is a sum of the form H̃(p, x) = H̃1(p) + H̃2(x) then
it is possible to sum over the intermediate “momentum” variables resulting in a complex
probability on a space of paths in the coordinate variable, X.

In this case ∑
n

⟨k|n̄⟩⟨n̄|H|m⟩ =

∑
n

⟨k|n̄⟩⟨n̄|m⟩(H1(pn) +H2(xm)) =

∑
n

⟨k|n̄⟩⟨n̄|m⟩H̃nm (56)

15



where H̃nm is just the “classical” Hamiltonian as a function of the eigenvalues.
A new complex probability can be defined by

PX(kf ; kN , · · · , k1) :=

eiH̃1(p0)t
∑

n1···nN

P (kf ;nN , kN , · · ·n1, k1)e−i
∑
H̃1(pnm )∆t. (57)

To show that this is normalized like a complex probability, interchange the order of the sum
over the intermediate k indices and n indices (both sums are finite). The k2 · · · kN sums
are just expressions for the identity. After eliminating k2 · · · kN what remains is a product
of Kronecker delta functions in the ni variables. Since the operator H1 is a multiplication
operator in the n variables, all but one of the n sums can be performed giving:∑

n1···nN

∑
k1···kN

P (kf ;nN , kN , · · ·n1, k1)e−i
∑
H̃1(pnm )∆t =

M−1∑
n=0

M−1∑
k1=0

⟨kf |n̄⟩e−iNH̃1(pn)∆t⟨n̄|k1⟩.

The k1 sum can be evaluated using

M−1∑
n=0

M−1∑
k1=0

⟨kf |n̄⟩e−iH̃1(pn)t⟨n̄|k1⟩ =

1
M

M−1∑
n=0

e−i2πkfn/M
M−1∑
k1=0

ei2πk1n/Me−iH̃1(pn)t =

1
M

M−1∑
n=0

e−i2πkfn/Me−iH̃1(pn)t× (1 − ei2πMn/M) = 0 1 < n < M − 1
M n = 0

= δn0e
−iH1(p0)t. (58)

Including the factor eiH1(p0)t gives∑
k1···kN

PX(kf ; , kN , · · · , k1) =

eiH̃1(p0)t
M−1∑
n=0

M−1∑
k1=0

P (kf ;nN , kN , · · ·n1, k1)e−i
∑

m H̃1(pm)∆t = 1. (59)
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The expression for the evolution operator becomes

⟨kf |e−iHt|ki⟩ =∑
k1···kN

PX(kf ; , kN , · · · , k1)e−i
∑

m H̃2(xnm )∆tδk1ki (60)

which is expressed as the expectation value of the functional e−i
∑

m H̃2(xnm )∆t on cylinder
sets of discrete paths. The finite sums over the discrete intermediate “momentum” variables
replace the Gaussian Fresnel integrals in the continuum case.

In this case the complex probability over cylinder sets of paths in x also factors into
products of one-step probabilities with

PX(kn+1; kn) =
∑
m

P (kn+1;m, kn)e−i(H̃1(pm)−H̃1(p0))∆t (61)

giving
⟨kf |e−iHt|ki⟩ =

lim
N→∞

∑(∏
n

PX(kn+1; kn)e−i
∑

m H̃2(pn)∆t

)
δk1,ki kf = kN+1 (62)

which has the structure of the N th power of an M ×M matrix. In this discrete case the
result becomes exact in the Trotter limit.

In the discrete case time evolution can be solved exactly by diagonalizing the M ×M

Hamiltonian matrix in the x basis, however the appeal of the discrete path integral is that
it is a model of a quantum circuit. Accuracy and be improved by using a higher order
approximation to the transfer matrix at each step. The complex probability interpretation
is a natural way to think about real-time path integrals.

The advantage of this approach is that the time evolution is approximated by calculating
the expectation value functional of a finite set of “classical” paths with respect to a complex
probability distribution. The ability of exactly factor the complex probability into products
of one step probabilities for each time step facilitates the computation. Finally exact uni-
tarity is maintained at each step. While the limit for continuous time evolution exists [3][4],
real computations are truncated at a finite number of time steps.

V. QUANTUM LOGIC

The interest in discrete path integrals is that they serve as models of quantum computers.
The difference between classical and quantum computers is related to the difference between
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classical and quantum logic. Classically if a system is prepared in a state A and a later
measurement tests if it will be detected in state B, there are two possible outcomes, true or
false. This leads to a two valued system of logic that is encoded in the bits used in digital
computing. In quantum mechanics there are three possibilities - the final system will always
be measured to be in the state B, it will never be measured to be in the state B, or there
is a finite probability P , with 0 < P < 1, that it will be measured to be in state B. This
leads to a three-valued logic or quantum logic.

The three valued logic of quantum mechanics [11] has a straightforward geometrical
interpretation. If state A is represented by a one-dimensional subspace of a Hilbert space and
state B is represented by another one-dimensional subspace then there are three possibilities
- (1) the subspace B is the subspace A, (2) the subspace B is orthogonal to the subspace A
or (3) any non-0 vector in A has a non-zero projection on the subspace B.

In the quantum case states are represented by vectors or rays, |a⟩ in a Hilbert space.
Quantum probabilities are expressed in terms of the Hilbert space inner product:

Pab := ⟨a|b⟩⟨b|a⟩
⟨a|a⟩⟨b|b⟩ (63)

which is independent of the vectors in the rays. The three possibilities correspond to

(1)Pab = 1 (64)

(2)Pab = 0 (65)

(3)0 < Pab < 1. (66)

When the Hilbert space is two dimensional the difference in these two types of logic is
encoded in bits or qubits respectively. A bit can only be in one of two states, true or false.
For a qubit in a spin up state, the three possibilities are (1) the probability of measuring
it to be in a spin up state is 1 (true), (2) the probability of measuring it to be in a spin
down state is 0 (false) and (3) the probability of measuring it to be in a non-trivial linear
combination up and down states is a positive number strictly between zero and one (maybe).

The discrete path integral developed in the previous section represents the transition
probability amplitude as the expectation value of a random variable on a space of sequences
of transition amplitudes labeled by paths in the space of eigenvalues of complementary
observables.
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VI. QUBITS

One property of Schwinger’s discrete Weyl algebra is that it has a natural representation
in terms of qubits. When M can be factored into products of prime numbers the U and
V operators can be replaced by an algebra of commuting pairs of operators with cycles
the length of each prime factor. The case of most interest for quantum computing is when
M = 2L. In that case the irreducible algebra is represented by tensor products of qubit
gates. For systems where the number of degrees of freedom K is not a power of two, they
can be embedded in a space of dimension M = 2L, for M > K.

Consider the case where M = 2L for large L. The indices n = 0 · · · 2L − 1 can be
labeled by L numbers that can only take the values 0 and 1. It has a L-bit representation
n↔ (n1, n2, · · · , nL)

n =
L∑

m=1

nm2m−1. (67)

This results in the identifications

|un1···nL
⟩ := |un⟩ |vn1···nL

⟩ := |vn⟩. (68)

Define unitary operators Ui and Vi by

Ui|vn1···nL
⟩ = |vn1···[ni+1]mod 2···nL

⟩ (69)

Vi|un1···nL
⟩ = |un1···[ni−1]mod 2···nL

⟩. (70)

Applying what was done in the general case to M = 2L gives

U2
i − 1 = V 2

i − 1 = 0, (71)

[Ui, Uj] = [Vi, Vj] = 0 [Ui, Vj] = 0 i ̸= j, (72)

ViUi = UiVie
iπ, (73)

Un =
L∏

m=1

Unm
m , (74)

V n =
L∏

m=1

V nm
m . (75)

Since U and V can be constructed from the Ui and Vi the set of {Ui} and {Vi} is also
irreducible.
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A matrix representation of Ui and Vi acting on the i-th qubit is

Vi = σ3 Ui = σ1 (76)

which are simple quantum gates. In this representation, v0 = u0 = 1; v1 = u1 = −1 and

|v0⟩ =

 1
0

 |v1⟩ =

 0
1

 (77)

|u0⟩ = 1√
2

 1
1

 |u1⟩ = 1√
2

 1
−1

 . (78)

The operators σ1 and σ3

Ui = σ1 =

 0 1
1 0

 Vi = σ3 =

 1 0
0 −1

 (79)

satisfy (5) and (17) for M = 2. They also satisfy

σ3σ1 = σ1σ3e
2πi

2 (σ2
1 − 1) = (σ2

3 − 1) = 0. (80)

Any linear operator A on this 2-dimensional vector space is a polynomial with constant
coefficients ai in these operators:

A = a1I + a2σ1 + a3σ3 + a4σ3σ1. (81)

In this case the Hilbert space is represented by L qubits. The irreducible set of operators, Ui
and Vi are represented by L pairs of Pauli matrices (σ1 and σ3) that act on each qubit. This
representation has the advantage that it is local in the sense that the Ui and Vi operators
act on a single qubit and the operators that act on different qubits commute. Equations
(74-75) relate the operators that appear in the discrete path integral to tensor products of
single qubit operators σ1 and σ3.

VII. SCHWINGER’S CONTINUUM LIMIT

While quantum computers are discrete quantum systems, many problems of interest
involve observables like momenta, coordinates, and canonical fields that have continuous
spectra. Applications require discrete approximations to these continuous systems. It is
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possible to use the discrete algebra generated by U and V to make a discrete approximation
to the continuum in the large M limit. The limit is designed to give a representation of the
Weyl algebra.

For large M Schwinger [10] defines the small quantity ϵ by

ϵ2 := 2π/M. (82)

For the purpose of approximating the continuum it is convenient (but not necessary) to
choose M = 2K + 1 odd and number the eigenvectors and eigenvalues from −K ≤ n ≤ K

instead of 0 to M−1 or 1 to M (For even M the indices could be labeled −M/2 ≤ n ≤M/2).
Discrete approximations to continuous variables p and x are defined by

pl = lϵ = l

√
2π
M

xl = lϵ = l

√
2π
M

−Kϵ ≤ xl, pl ≤ Kϵ (83)

where
Kϵ =

√
Mπ

2 −
√

π

2M . (84)

With these definitions the separation between successive values of pl and xl, pl+1 − pl =
xl+1 − xl = ϵ vanishes as M → ∞ while at the same time the maximum and minimum
values of pl and xl, p±K = x±K = ±(

√
Mπ

2 −√ π
2M ) approach ±∞ in same limit.

While for finite M any vector with a finite number of elements has a finite norm, in the
continuum limit (M → ∞) this is no longer true so the limiting vectors with finite norm
should be square summable. This means that components of vectors with large |l| should
approach 0 in the M → ∞ limit.

For unitary operators U and V given by (5) and (18) Hermitian operators p̃ and x̃ are
defined by

V = eiϵp̃ U = eiϵx̃. (85)

These can be used to define

V (xm) = eip̃xm = eip̃ϵm = V m (86)

U(pn) = eix̃pn = eix̃ϵn = Un. (87)

With these definitions equation (25) becomes

V (xm)U(pk) = U(pk)V (xm)e i2πmk
M =
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U(pk)V (xm)eiϵmϵk = U(pk)V (xm)eipkxm (88)

which is the Weyl [12] form of the canonical commutation relations, where in this case the
variables are discrete. In order to take the continuum limit define numbers p := ϵn and
x = ϵm. This motivates the definitions

dp = ϵdn =
√

2π
M
dn dx = ϵdm =

√
2π
M
dm. (89)

It follows from (85) that eigenvectors of V are also eigenvectors of p̃ and the eigenvectors of
U are also eigenvectors of x̃. Choosing the normalization of the states |pn⟩ and |xn⟩ so∫

dp ≈
K∑

n=−K

dp

dn
= ϵ

K∑
n=−K

(90)

∫
dx ≈

K∑
n=−K

dx

dm
= ϵ

K∑
m=−K

(91)

I =
K∑

l=−K

|vl⟩⟨vl| =
K∑

l=−K

|pl⟩dpl⟨pl| =
K∑

l=−K

|pl⟩ϵ⟨pl| (92)

I =
K∑

l=−K

|ul⟩⟨ul| =
K∑

l=−K

|xl⟩dxl⟨xl| =
K∑

l=−K

|xl⟩ϵ⟨xl| (93)

which expresses the sum over small steps in p or x as integrals. Equations (92) and (93)
imply the relations

|pl⟩ := |vl⟩/
√
ϵ (94)

and
|xl⟩ := |ul⟩/

√
ϵ. (95)

Using these relations gives

⟨pm|xn⟩ = 1
ϵ
⟨vm|un⟩ = 1

ϵ
√
M
e

−2πimn
M = 1√

2π
e−ipmxn (96)

⟨pm|pn⟩ = 1
ϵ
⟨vm|vn⟩ = δmn

ϵ
(97)

and
⟨xm|xn⟩ = 1

ϵ
⟨um|un⟩ = δmn

ϵ
. (98)

In this notation equations (86) and (87) with (5) and (17) give imply

U(xm)|xn⟩ = |xm + xn⟩ (99)
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V (pm)|pn⟩ = |pm − pn⟩ (100)

which can be expressed in terms of the “continuum variables” as

U(x)|x′⟩ = |x′ + x⟩ (101)

V (p)|p′⟩ = |p′ − p⟩ (102)

VIII. COMPLEX PROBABILITIES IN REAL-TIME PATH INTEGRALS ON IN-

FINITE DIMENSIONAL HILBERT SPACES

For problems involving scattering or canonical field theories the relevant operators have
continuous spectra. Systems with continuous variables can be approximated by discrete
systems following section VII. In the continuous case a general Hamiltonian, H(p, x), can
be expressed as

H =
∫
H̃(p, x)U(x)V (p)dxdp→∑

ij

H̃(pj, xi)U(xi)V (pj)dqidpj (103)

with a similar representation for the transfer matrix

T := e−iH∆t =
∫
T̃ (x, p)U(x)V (p)dxdp→

∑
ij

T̃ (xi, pj)U(xi)V (pj)dxidpj (104)

where
⟨p|T |x⟩ = T̃ (p, x)⟨p|x⟩ and ⟨p|H|x⟩ = H̃(p, x)⟨p|x⟩. (105)

Here the quantities with the “tildes” are matrix elements of operators in a mixed basis where
the canonical commutation relations are used to order the momentum operator to the left
of the coordinate operators.

The probability amplitude can be expressed in terms of transfer matrices

⟨xf |e−iHt|xi⟩ (106)

is
⟨xf |e−iHt|xi⟩ = ⟨xf |[e−iHt/N ]N |xi⟩ = ⟨xf |TN |xi⟩. (107)
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Inserting intermediate states gives

⟨xf |e−iHt|xi⟩ =∫ ∏
i

dpidxi⟨xf |pN⟩⟨pN |T |xN⟩⟨xN |pN−1⟩⟨pN−1|T |xN−1⟩ · · ·

⟨x3|p2⟩⟨p2|T |x2⟩⟨x2|p1⟩⟨p1|T |x1⟩⟨x1|xi⟩ =∫ ∏
i

dpidxi⟨xf |pN⟩⟨pN |xN⟩T̃ (pN , xN)⟨xN |pN−1⟩×

⟨pN−1|qN−1⟩T̃ (pN−1, xN−1) · · ·

⟨x3|p2⟩⟨p2|x2⟩T̃ (p2, x2)⟨x2|p1⟩⟨p1|x1⟩T̃ (p1, x1)⟨x1|xi⟩. (108)

This is exact; the Trotter limit justifies the replacement

T̃ (pi, xi) → e−iH̃(pi,xi)t/N (109)

as N → ∞.
Completeness implies

P (xf ; pN , xN , · · · , p1, x1) :=

⟨xf |pN⟩⟨pN |xN⟩⟨xN |pN−1⟩⟨pN−1|xN−1⟩ · · ·

⟨x3|p2⟩⟨p2|x2⟩⟨x2|p1⟩⟨p1|x1⟩ (110)

satisfies ∫ N∏
i=1

dpidxiP (xf ; pN , xN , · · · , p1, x1) = 1 (111)

independent of N . With the replacement (110) equation (108) becomes

⟨xf |e−iHt|xi⟩ =

lim
N→∞

∫ ∏
i

dpidxiP (xf ; pN , xN , · · · , p1, x1)×

e−i
∑
H̃(pj ,xj)t/Nδ(x1 − xi) (112)

where the limit is interpreted as a strong limit; the initial coordinate must be multiplied by
a wave packet and integrated. The complex probability interpretation follows by considering
the integrals as Henstock integrals, which are limits of generalized Riemann sums. Cylinder
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sets are defined by sets of paths that go through a generalized Riemann interval at each
time step. The complex probability admits a factorization

N∏
i=1

dpidxiP (xf ; pN , xN , · · · , p1, x1) :=

P (xf ;xN , pN)dxNdpNP (xN ;xN−1, pN−1)dxN−1dpN−1 · · ·

P (x2;x1, p1)dx1dp1 (113)

which expresses the complex probability as a product of one step probabilities for each time
step. Using this factorization gives

⟨xf |e−iHt|xi⟩ =

lim
N→∞

∫ ∏
i

dpidxiP (xi+1; pi, xi, )e−iH̃(pi,xi)t/Nδ(x1 − xi),

xN+1 = xf (114)

In the discrete approximation of section VII the integrals are replaced by sums over the
discrete values of pm = mϵ, xm = mϵ, dpm = ϵ = dp and dxm = ϵ = dx where −K ≤ m ≤ K,
M = 2K + 1 and ϵ2 = 2π

M
. Equation (111) is still satisfied independent of the number M of

discrete values of pm, xm. In the discrete case a cylinder set is the set of paths that take on
specific discrete values of p = nϵ and q = mϵ at each of the N intermediate time steps. In
that case the complex probability for phase space paths becomes

P (xf ; pN , xN , · · · , p1, x1)
∏
i

dpidxi →

P (xf ; pNiN , xNjN , · · · , p1i1 , x1j1)ϵ2N :=

⟨xf |pNiN ⟩ϵ⟨pNiN |xNjN ⟩ϵ⟨xNjN |pN−1,iN−1⟩ϵ⟨pN−1iN−1 |xN−1jN−1⟩ϵ · · ·

ϵ⟨x3j3|p2i2⟩ϵ⟨p2i2|x2j2⟩ϵ⟨x2j2 |p1i1⟩ϵ⟨p1i1|x1j1⟩ϵ. (115)

Here these indices represent the discrete momenta and coordinates that define a path in
phase space. This has the property that the sum over all of the MN cylinder sets for N
intermediate time steps gives 1 independent of xf . In this case there are cylinder sets of
paths in both the p and x variables. These are considered as discrete approximations to the
phase space paths, p(t), x(t).
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In the Trotter limit the discrete transfer matrix and discrete Hamiltonian (see (103)),

H =
∑

H̃(pm, xn)U(xn)V (pm) (116)

T =
∑

T̃ (pm, xn)U(xn)V (pm) (117)

are related by
T̃ (pm, xn) ≈ e−iH̃(pm,xn)∆t, (118)

where this approximation preserves unitarity.
In this case

⟨xf |e−iHt|xi⟩ =

lim
N→∞

∑
P (xf ; pNiN , xNjN , · · · , p1i1 , x1j1)×

e−i
∑
H̃(p1ik ,x1jk )t/Nδx1,xi (119)

which expresses time evolution as the expectation of a complex probability on cylinder sets
of paths in phase space. As in the continuous case the complex probability factors into a
product of N one step complex probabilities:

P (xf ; p=NiN , xNjN , · · · , p1i1 , x1j1) =∏
k

[⟨xk+1ik+1 |pkik⟩ϵ⟨pkik |xkik⟩ϵ] xN+1 = xf (120)

and the probability amplitude for a transition from xi to xf after time t becomes

⟨xf |e−iHt|xi⟩ =

lim
N→∞

∑∏
k

[⟨xk+1ik+1 |pkik⟩ϵ⟨pkik |xkik⟩ϵe−iH̃(pkikxkik )t/N ]δx1,xi (121)

where the sum is over cylinder sets. This reduces the calculation to computing powers of an
M ×M matrix

When H has the form

H(p, x) = K(p) + V (x) K(0) = 0 (122)

equation (121) becomes
⟨xf |e−iHt|xi⟩ =

lim
N→∞

∑∏
k

[⟨xk+1ik+1 |pkik⟩ϵe−iK̃(pkik )t/N⟨pkik |xkik⟩×
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e−iṼ (xkik t/Nϵ]δq1,qi (123)

Since everything is finite the sums over the p values can be computed first, defining

PX(xf ;xNiN , xN−1iN−1 · · ·x1i1) :=∑
p

∏
k

[⟨xk+1ik+1|pkik⟩e−iK̃(pkik )t/Nϵ⟨pkik |xkik⟩ϵ (124)

which is complex valued function on cylinder sets of paths. It follows from (58), that
summing over all of the cylinder sets, starting with the right most index and working to the
left gives ∑

x

PX(xf ;xNiN , xN−1iN−1 · · ·x1i1) = e−iK(0)t = 1. (125)

With this definition
⟨xf |e−iHt|xi⟩ =

lim
N→∞

∑
q

PX(xf , xNjN , · · · , x1j1)e−i
∑
Ṽ (x1jk )t/Nδx1,xi . (126)

As in the general case the complex probability factors into products of conditional proba-
bilities associated with each time step:

PX(xf ;xNjN , · · · , x1j1) =
∏
k

PX(xk+1ik+1 ;xkik) (127)

where
PX(xk+1ik+1 ;xkik) =∑

pkik

⟨xk+1ik+1 |pkik⟩e−iK̃(pkik )t/Nϵ⟨pkik |xkik⟩ϵ (128)

which gives the following expression for the probability amplitude

⟨xf |e−iHt|xi⟩ =

lim
N→∞

∑∏
k

[PX(xk+1ik+1 ;xkik)e−iṼ (xkik t/N ]δx1xi (129)

This expresses the transition amplitude as the N th power of a M ×M matrix.
Note that treating an infinite dimensional system as the limit of finite dimensional systems

rather than discretizing the infinite dimensional system has some advantages. Discretizing
was used in [7] where the rate of convergence was sensitive to how the points used to evaluate
the interaction in each interval were chosen. The factorization of the complex probability
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into products of conditional probabilities becomes approximate upon discretization. These
choices could in principle affect unitarity numerically. These issues do not appear in the
discrete case. In addition, the discrete analogs of the Fresnel integrals are well-defined
finite sums. The complex probability interpretation arises naturally from the completeness
relation.

IX. SUMMARY AND CONCLUSION

This paper discusses an interpretation of the Feynman path integral for finite dimensional
systems as the expectation value of a functional of paths with respect to a complex proba-
bility on cylinder sets of paths. This interpretation follows from the completeness relation
and the Trotter product formula. While the passage from imaginary time to real time is
problematical for an interpretation of the path integral an integral, replacing the real-time
integral by the expectation value of a functional on cylinder sets of paths with respect to
a complex probability agrees with the Trotter limit. In the “phase space” form, based on
Schwinger’s [10] discrete Weyl representation, it can be applied to any Hamiltonian matrix.
Infinite dimensional systems can be approximated as limits of finite dimensional systems.

The complex probability approach provides an alternative way of thinking about path
integrals. It is difficult to interpret the meaning of a discrete-valued function of a continuous
time variable. One possible interpretation follows by noting that a sequence of discrete
eigenvalues at different time steps are labels for transition amplitudes from the state at a
given time step to another state at the next time step. All possible transition amplitudes are
allowed at intermediate times between these successive time steps. In this sense a cylinder
set of paths can be thought of as an ordered sequence of transition amplitudes between
specific states at a sequence of time steps. The eigenvalues that label these amplitudes are
the quantities are normally associated with a classical path. The path integral is a complex
weighted average over all ordered sequences of transition amplitudes. This provides a purely
quantum mechanical interpretation of the path integral. This interpretation is natural when
the complex probabilities are derived from the completeness relations.

The discrete representation has an equivalent qubit representation in terms of an irre-
ducible set of elementary qubit gates. This representation may be more efficient for compu-
tational purposes since the complementary operators, Ui and Vi act on single qubits.
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Discrete approximations to infinite dimensional systems are discussed in Appendix I and
Appendix II. These applications demonstrate how this discrete formulation of the path in-
tegral can be applied to solve problems in potential scattering and quantum field theory.
The path integral approach is not the most efficient way to perform scattering calculations,
but the simple calculation presented in Appendix I, based time-dependent scattering the-
ory, illustrates some of the issues need to be considered in future treatments of scattering
formulated in terms of quantum computers.

In contrast to scattering problems, path integrals are one of the more direct methods
to solve interacting field theories. The illustrated application to field theory in Appendix
II uses a basis of wavelets to replace the fields by an infinite collection of almost local
operators. Volume and resolution truncations are used to replace the field by a finite number
of discrete modes. The calculations presented in Appendix II use a severe truncation of
a ϕ(x)4 field theory to two modes, but the calculation was completely non-perturbative.
Realistic calculations are still a long way off.

X. APPENDIX I: SCATTERING IN THE DISCRETE REPRESENTATION

Formal scattering theory is an idealization. A real scattering experiment takes place in
a finite volume during a finite time interval. The relevant physics is dominated by a finite
number of degrees of freedom that are limited by the energy and scattering volume.

The fundamental quantum mechanical observable is the probability for a transition from
a prepared initial state to a detected final state

Pfi = |⟨ψf (t)|ψi(t)⟩|2. (130)

While the individual states depend on time, the probability (130) is independent of t due to
the unitarity of the time evolution operator. The important constraint is that both states
have to be evaluated at the same time. The problem of scattering theory is that there is
no common time when both the initial and final states are simple. On the other hand the
initial state is simple before the collision and the final state is simple after the collision.

The initial and final states at the time of collision can be determined by evolving them
from times where they behave like non-interacting subsystems to the collision time. Since
localized wave packets spread, the effects of spreading can be eliminated by starting with
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localized wave packets at the collision time, evolving them beyond the range of interactions
using free time evolution, and then evolving them back to the interaction region using the
full Hamiltonian. The result is a unitary mapping that transforms the free wave packet at
the collision time to the dynamical wave packet at the same time.

If U0(t) and U(t) represent the free and dynamical unitary time evolution operators, then
assuming the time of collision is approximately at time t = 0 the scattering asymptotic
conditions have the form

∥U(±τ)|ψ±(0)⟩ − U0(±τ)|ψ0±(0)⟩∥ ≈ 0 (131)

where the time τ is sufficiently large for the interacting particles to be separated beyond the
range of their mutual interactions. This expression is independent of τ for sufficiently large
τ , but the minimum value of τ depends on the range of the interaction and the structure of
|ψ0±(0)⟩. Normally dependence on these conditions is removed by taking the limit τ → ∞.
In this work, for computational reasons, it is desirable to choose τ as small as possible, which
requires paying attention to the range of the interaction and the structure of the initial and
final states.

The unitarity of the time evolution operator means that (131) can be replaced by

∥ψ±(0)⟩ − U(∓τ)U0(±τ)|ψ0±(0)⟩∥ ≈ 0 (132)

for sufficiently large τ . The operators

Ω±(τ) := U(±τ)U0(∓τ) (133)

are unitary mappings from |ψ0±(0)⟩ to |ψ±(0)⟩.
Using these definitions the scattering probability can be expressed as

Pfi = |⟨ψ+(0)|ψ−(0)⟩|2 = |⟨ψ0+(0)|S(τ)|ψ0−(0)⟩|2 (134)

where
S(τ) := Ω†(τ)Ω(−τ) (135)

is the scattering operator. Since S(τ) is unitary it can be expressed in terms of a self-adjoint
phase shift operator

S(τ) = e2iδ(τ) (136)
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where S(τ) should be independent of τ for sufficiently large τ .
In a real experimental measurement the probability (134) depends on the structure of

the initial and final wave packets, which cannot be precisely controlled by experiment. If
the matrix elements of S(τ) in sharp-momentum states are slowly varying functions of
momentum, then the dependence on the wave packet factors out [13] and can be eliminated
to compute differential cross sections. In this case the sharp-momentum matrix elements
can be approximated from the matrix elements using Gaussian (minimal uncertainty) wave
packets with a “delta-function normalization” that are sharply peaked about the desired
momenta.

This formulation of scattering admits a path integral treatment. As previously discussed
scattering reactions are dominated by a finite number of degrees of freedom. The use of
the discrete Weyl representation has the advantage that unitarity is exactly preserved on
truncation to a finite number of degrees of freedom. Alternative path integral treatments of
scattering appear in [14][15][16].

The advantage of the discrete representation is that U0(−τ)U(2τ)U0(−τ) can be ex-
pressed as the limit of products of the transfer matrices defined section 8 (see (126)-(128))

S(τ) = lim
N→∞

Y −NX2NY −N (137)

where
Yij = PX(xi, xj,∆t) (X)ij = PX(xi, xj,∆t)e−iV (xj)∆t, (138)

∆t = τ/N and N is the number of Trotter time slices. Note also that

Y −N = PX(xf , xi,−N∆t). (139)

Sharp-momentum matrix elements of the scattering operator can be expressed in terms of
the matrix elements of the transition operator, T , which is easier to calculate in the discrete
representation

S = I − 2πiδ(Ef − Ei)T (140)

where T is approximately given by

T ≈ V Ω(−τ) (141)

when evaluated in normalizable states with sharply peaked momenta. The advantage of this
representation is that for scattering problems V is a short range operator that provides a
volume cutoff.
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In the discrete representation sharp-momentum eigenstates are normalizable however they

cannot be used in scattering calculations because they are completely delocalized in space
since the discrete momenta and coordinates are complementary - making it impossible to
get to the asymptotic region.

The most straightforward way to construct suitable initial or final wave packets in the
discrete representation is to approximate the corresponding minimal uncertainty states of
the continuum theory. The quantities to control are the mean position, momentum and the
uncertainty in both of these quantities defined for a given state |ψ⟩ by:

⟨x⟩ψ :=
K∑

n=−K

⟨ψ|un⟩nϵ⟨un|ψ⟩
⟨ψ|ψ⟩ (142)

⟨p⟩ψ :=
K∑

n=−K

⟨ψ|vn⟩nϵ⟨vn|ψ⟩
⟨ψ|ψ⟩ (143)

(∆x)2 = ⟨ψ|(x− ⟨x⟩)2|ψ⟩ =
K∑

n=−K

⟨ψ|un⟩((nϵ)2 − ⟨x⟩2)⟨un|ψ⟩
⟨ψ|ψ⟩ (144)

(∆p)2 = ⟨ψ|(p− ⟨p⟩)2|ψ⟩ =
K∑

n=−K

⟨ψ|vn⟩((nϵ)2 − ⟨p⟩2)⟨vn|ψ⟩
⟨ψ|ψ⟩ . (145)

The continuum delta-function normalized minimal uncertainty states are

⟨p|ψ0(0)⟩ = 1
2
√
π∆pe

− (p−⟨p⟩)2

4(∆p)2 . (146)

where ⟨p⟩ is the mean momentum and ∆p is the quantum mechanical uncertainty in p for
this wave packet. This wave packet needs to be evolved to −τ using the free time evolution
which adds a phase to (146):

⟨p|ψ0(−τ)⟩ = 1
2
√
π∆pe

− (p−pi)2

4(∆p)2 +i p
2

2µ τ . (147)

In the discrete “p” representation this is replaced by

⟨n|ψ0(−τ)⟩ = Ce
− (ϵn−⟨p⟩)2

4(∆p)2 +in
2ϵ2
2µ τ

. (148)

where C is a normalization constant. In the x representation this becomes

⟨m|ψ0(−τ)⟩ = ϵ√
2π

K∑
n=−K

eiϵ
2mn⟨n|ψ0(−τ)⟩. (149)
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To illustrate that this gives a good approximation to the continuum results ⟨p⟩, ⟨x⟩, ∆p
and ∆x were calculated starting with ⟨p⟩ = 2.5, ∆p = .25 and K = 300 as input parameters
in (147). The results of the calculation

meanp−calc = 2.500000

meanx−calc = 0.000000

∆p−calc = .3000000

∆x−calc = 1.666667

are consistent with the input parameters, the minimal uncertainty condition, ∆p∆x = 1/2
and the continuum results.

With these states the sharp-momentum half-shell transition matrix elements are

⟨pf |T (Ei)|pi⟩ ≈ ⟨ψ0f (0)|V XN |ψ0i(−τ)⟩. (150)

As a test the discrete approximation was applied to the problem of one-dimensional scat-
tering of particle of mass m by a repulsive Gaussian potential of the form

V (q) = λe−αq
2 (151)

with λ = .5 and α = 2.0. The potential is plotted in figure 1. The particle’s mass is taken to
be 1 in dimensionless units so the velocity and momentum can be identified. The initial wave
packet is a Gaussian with a delta function normalization in momentum space with mean
momentum p = 2.5 and width ∆p = .25. It is pictured in figure 2. The Fourier transform
of the initial wave packet is given in figure 3. The oscillations are because the momentum
space wave packet has a non-zero mean momentum. Given the size of the potential and
wave packets, the wave packet needs to move about 18 units to the left in order to be out
of the range of the potential. This suggest that for v = p/m = 2.5 that τ = 7 should
be sufficient to move the wave packet out of the range of the potential. The resulting free
wave packet at τ = −7 is shown in figure 4. The scattered wave function with K = 300
(M = 601) after N = 100 time steps is shown in figure 5, and that result multiplied by the
potential is shown in figure 6. Compared to the wave function in figure 3, the wave function
in figure 5 includes the effects of the interaction. Figure 6 illustrates the cutoff due to the
short range potential; it shows how only the part of the wave function inside the range of
the interaction contributes to the scattering operator. Figure 7 compares the result of the
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off-shell Born approximation ⟨p|V |ψ(0)⟩ to the calculation of the real and imaginary parts
of ⟨p|T |ψ(0)⟩ while figure 8 compares ⟨p|T |ψ(0)⟩ to ⟨p|T (p0)|p0⟩ obtained by numerically
solving the Lippmann-Schwinger equation using the method [17].

Figure 8 shows that the path integral computation with an initial wave packet with a
width of 1/10 of the momentum converges to the numerical solution of the integral equation.
In unrelated time-dependent scattering calculations [18] a ∆p of about a tenth of p gave good
approximations to sharp momentum matrix elements of the transition operator for a wide
range of momenta.

Unlike the solution of the Lippmann Schwinger equation, in the path integral approach for
each energy it is necessary to determine minimal values of M ,N ,τ and ∆p that are needed for
convergence. In practice there are a number of trade offs. Making the wave packets narrow
in momentum increases the scattering volume in the coordinate representation. This in turn
requires a larger τ to get out of the range of the potential. If τ gets too large the wave
packet can move past qmax = Kϵ and will reappear at qmin = −Kϵ. As p gets large the
oscillations in the q space wave function have higher frequencies, which requires smaller time
steps, while when p gets small it is necessary to make the wave packet width in momentum
small enough so the coordinate space tail of the wave function gets out of the interaction
volume.

The computations require storing the initial vector. It is not necessary to store the one-
step transfer matrix - it can be computed efficiently on the fly. This is important for realistic
calculations since the vectors will be significantly larger in higher dimensions. The hope is
that in the future qubits can be used to represent large vectors.

This one-dimensional example approximated half-shell sharp-momentum transition ma-
trix elements. The on-shell values can be used to extract other observables such as phase
shifts and in the one-dimensional case transmission and reflection coefficients. This formula-
tion of the one-dimensional problem in terms of transition matrix elements has the advantage
that the method can be formally be used in higher dimensions and to treat complex reactions
or scattering in quantum field theory.

The formulation of the discrete path integral used the discrete Schwinger representation
based on a single pair of complementary operators where the complex one time step probabil-
ity is represented by a dense matrix. An equivalent representation in terms of qubits involves
tensor products of matrices (74-75) that act on single qubits, which may have computational
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advantages.
One observation from these calculations that will have an impact on future computations

using quantum computers is that width of the wave packets, total time for scattering, the
scattering energy, the number of time steps and the resolution of the discretization all have
to be considered together in order ensure an efficient calculation. This is because each one of
these approximations generates its own source of errors that impact the errors in the other
approximations.

The general strategy discussed above can also principle be utilized to formulate scattering
quantum field theory. The Haag-Ruelle formulation of scattering [19][20][21][22] is the nat-
ural field-theoretic generalization of the quantum mechanical treatment of time dependent
scattering. Like ordinary quantum mechanical scattering it uses strong limits and needs
one-body (i.e. bound state) solutions to formulate the scattering asymptotic conditions.

XI. APPENDIX: DISCRETE MULTI-RESOLUTION REPRESENTATION OF

QUANTUM FIELD THEORY

One motivation for studying quantum computing in physics is that it might provide
a framework for a numerical treatment of problems in strongly interacting quantum field
theory. Clearly this goal is a long way off for realistic theories, but the state of quantum
computing is advancing rapidly. Discrete formulations of field theory naturally fit into the
discrete framework discussed in this work and should be relevant for future applications.
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Discrete truncations to a small number of degrees of freedom can be used as a laboratory
to explore how different field modes interact in a more realistic truncation of the theory.

A numerical treatment of quantum field theory requires a truncation to a system with
a finite number of degrees of freedom. For reactions that take place in a finite space-time
volume and involve a finite energy it is natural to limit the number of degrees of freedom
by making volume and resolution truncations. Degrees of freedom that are outside of this
volume or energetically inaccessible due to their resolution are expected to be unimportant
for the given reaction. Daubechies wavelets [23][24][25] and scaling functions are a basis
of square integrable functions and a natural representation to perform both kinds of trun-
cations. The basis consists of a complete orthonormal set of functions that have compact
support and a limited amount of smoothness. They have the property that in any small
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volume there are an infinite number of basis functions supported entirely in that volume.
This means that they can be used to construct “local” observables by smearing the fields
with basis functions. All of the basis functions ξn(x) are generated from the solution of a lin-
ear renormalization group equation by translations and dyadic scale transformations, which
facilitates computations. Because they are complete they can be used to exactly expand the
canonical fields

Φ(x, t) =
∑

Φn(t)ξn(x)

Π(x, t) =
∑

Πn(t)ξn(x)

where
Φn(t) :=

∫
dxΦ(x, t)ξn(x)

and
Πn(t) :=

∫
dxΠ(x, t)ξn(x)

are discrete field operators. If the fields satisfy canonical equal-time commutation relations

[Φ(x, t),Π(y, t)] = iδ(x − y) (152)

then the discrete fields Φn and Πn will satisfy discrete versions of the canonical equal time
commutation relations [26] [27] [28]:

[Φm(t),Πn(t)] = iδmn

[Φm(t),Φn(t)] = 0

[Πm(t),Πn(t)] = 0. (153)
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In terms of these degrees of freedom the Hamiltonian for a ϕ4 theory has the form

H = 1
2
∑
n

ΠnΠn + m2

2
∑
n

ΦnΦn +
∑
mn

DmnΦmΦn+

λ
∑
klmn

ΓklmnΦkΦlΦmΦn (154)

where the sum are all infinite. Since H commutes with itself the discrete fields in H can be
evaluated at t = 0. The matrices in (154) are constants defined by the integrals

Dmn = 1
2

∫
∇∇∇ξn(x) · ∇∇∇ξm(x)dx (155)

Γklmn =
∫
ξk(x)ξl(x)ξm(x)ξn(x)dx. (156)

For the wavelet basis these constants vanish unless all of the functions appearing in the
integrals have a common support, which makes them almost local. In addition, because
all of the functions in the integrand are related by translations and scale transformations
to a single function, the integrals can all be expressed as linear combinations of solutions
of some small linear systems generated by a renormalization group equation (see (157)).
Unlike a lattice truncation, the wavelet representation of the field theory is (formally) exact
(before truncation). The basis functions regularize the fields so local products of fields
that appear in the Hamiltonian are replaced by infinite sums of well-defined products of
discrete field operators. The basis functions are differentiable, so there are no finite difference
approximations.

Wavelet representations of quantum field theories have been discussed by a number of
authors [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [38] [39] [26] [40] [41] [42] [43] [44] [45]
[46] [27] [47] [48] [28] [49] [50]. What is relevant is that the Hamiltonian (154) has the form
H̃ = H̃1(p) + H̃2(x) → H̃1(Π) + H̃2(Φ), except it involves an infinite number of degrees
of freedom. It is diagonal and quadratic in the discrete momentum operators and has a
non-trivial (almost local) dependence on the Φn operators.

The advantage of this basis is that it has natural volume and resolution truncations. For
reactions taking place in a finite volume with a finite energy a finite number of these degrees
of freedom should provide a good approximation. This reduces the problem to a problem
with a finite number of discrete degrees of freedom. In addition the truncated Hamiltonian
still has the form (154), except the sums are only over the retained discrete modes. As the
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volume and resolution are increased (i.e as more modes are added) the parameters of the
theory have to be adjusted to keep the some physical observables constant.

The truncated problem is a finite number of degree of freedom generalization of the one
degree of freedom problem discussed in the section X.

The construction of the wavelet basis used to construct the discrete representation of
the Hamiltonian (154) is outlined below. The starting point the solution of the linear
renormalization group equation

s(x) =
2L−1∑
l=0

hlDT
ls(x) (157)

where
Df(x) :=

√
2f(2x) and Tf(x) := f(x− 1) (158)

are unitary discrete dyadic scale transformations and unit translations. The hl are constants
that depend on the choice of L. Generally as L increases the solutions, s(x), become
smoother but the support increases. A useful case is L = 3 where the solution s(x) of
(157), called the scaling function, has support on [0, 2L− 1] = [0, 5] and has one continuous
derivative. In that case the coefficients hl for the Daubechies L = 3 scaling functions are

h0 = (1 +
√

10 +
√

5 + 2
√

10 )/16
√

2

h1 = (5 +
√

10 + 3
√

5 + 2
√

10 )/16
√

2

h2 = (10 − 2
√

10 + 2
√

5 + 2
√

10 )/16
√

2

h3 = (10 − 2
√

10 − 2
√

5 + 2
√

10 )/16
√

2

h4 = (5 +
√

10 − 3
√

5 + 2
√

10 )/16
√

2

h5 = (1 +
√

10 −
√

5 + 2
√

10 )/16
√

2. (159)

They are determined by the requirement that the solution of (157) and unit translates are
orthonormal and locally finite linear combinations of these unit translates can be used to
locally pointwise represent degree 2 polynomials. Given the solution, s(x), of (157) new
functions are constructed from s(x) by rescaling and translating

skn(x) := DkT n(x)s(x) =
√

2ks(2kx− n). (160)
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Since (157) is homogeneous in s(x) the starting scale can be fixed by requiring∫
s(x)dx = 1. (161)

The functions skn(x) for fixed k span a subspace of the square integrable functions on the
real line with a resolution 2−kL:

Sk := {f(x)|f(x) =
∞∑

n=−∞

cns
k
n(x)

∞∑
n=−∞

|cn|2 <∞}. (162)

The renormalization group equation (157) implies

Sk ⊂ Sk+1. (163)

It follows that
Sk+1 = Sk ⊕Wk. (164)

where Wk is the orthogonal complement of Sk in Sk+1. An orthonormal basis for the
subspace Wk is the “wavelet functions”:

wkn(x) = DkT nw(x) (165)

where

w(x) :=
2L−1∑
l=0

(−)lh2L−1−lDT
ls(x) (166)

is called the “mother wavelet”. This decomposition can be continued to generate a multi-
resolution decomposition of L2(R)

L2(R) = Sk ⊕∞
l=0 Wk+l. (167)

This results in a multi-resolution orthonormal basis for L2(R)

{ξn(x)}∞n=−∞ := {skn(x)}∞n=−∞ ∪ {wmn (x)}∞n=−∞,l=k. (168)

For the choice L = 3 the basis functions skn(x) and wkn(x) have compact support on
[2−kn, 2−k(n + 5)]. All of the basis functions have one continuous derivative so the coef-
ficients (155) are defined . The functions skn(x) are like splines in that linear combinations
can be used to locally pointwise represent degree 2 polynomials while the functions wln(x)
are orthogonal to the same polynomials on their support. The Fourier transforms of the
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basis functions are entire functions due to their compact support. Orthonormal three di-
mensional basis functions are products of one-dimensional basis functions. In spite of these
nice properties, the basis functions are fractal valued (since they are related to fixed points
of a renormalization group equation) and cannot be written down in closed form.

In order to use this representation the constant coefficients Dmn and Γn1···nk
that appear

in the Hamiltonian (154) need to be computed. Using scale transformations (158) and the
renormalization group equation (157) they can all be expressed in terms of the integrals

dn =
∫
ds(x)
dx

ds(x− n)
dx

dx − 4 ≤ n ≤ 4 (169)

γm,n,k =
∫
s(x)s(x−m)s(x− n)s(x− k)dx − 4 ≤ m,n, k ≤ 4. (170)

These integrals for different values of m,n, k are related to each other by finite linear equa-
tions derived from the renormalization group equation (157) and the scale fixing condition
(161). These linear systems can formally be solved in terms of the coefficients hl (159).
The coefficients dn are rational numbers and can be found in the literature on wavelets
[51]. To find the γmnk requires finding eigenvalues of a 93 × 93 matrix. This eliminates the
need be able to evaluate fractal valued functions. Alternatively the integrals γmnk can be
approximated by noting that the renormalization group equation (157) and the scale fixing
condition (161) can be used to exactly calculate the basis functions and their derivatives
at all dyadic rational points. Since the functions and their derivatives are continuous and
the dyadic rationals are dense this can be used to estimate these quantities and integrals
involving these quantities to any desired accuracy.

In order to illustrate a path integral treatment of this system consider a truncation of
the theory in 1+1 dimensions where only 2 adjacent modes of the Hamiltonian (154) are
retained. In this case the overlap coefficients that appear in the Hamiltonian are related to
dn and γlmn by

Dmn = dn−m and Γklmn = γl−k,m−k,n−k (171)

The coefficients that couple adjacent modes can be expressed in terms of the following
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quantities

Γ0000 = 0.9528539

Γ0001 = 0.0670946

Γ0011 = 0.0890895

Γ0111 = −0.1424536

D00 = 295./56.

D01 = −356./105.

D10 = D01

D11 = D00.

where the Γ coefficients were computed by numerical integration using the trapezoidal rule
with the basis functions evaluated at 256 dyadic points on their support. Convergence was
verified using 512 dyadic points.

The truncated Hamiltonian in this case is

H = 1
2

1∑
n=0

ΠnΠn + m2

2

1∑
n=0

ΦnΦn +
1∑

m,n=0

DmnΦmΦn+

λ
1∑

k,l,m,n=0

ΓklmnΦkΦlΦmΦn (172)

where Γ0000 = Γ1111, Γ0001 = Γ0010 = Γ0100 = Γ1000, etc.. The path integral treatment of
the field theory in the discrete representation is a multi-dimensional generalization of the
treatment for one degree of freedom where each field mode represents an independent degree
of freedom.

A general numerical treatment involves a truncation and renormalization followed by two
approximations. The truncation discards all but a finite number, F , of discrete degrees of
freedom.

H → HF . (173)

Ideally physics at a given energy scale and in a given volume should be dominated by a
finite number of accessible degrees of freedom. The remaining degrees of freedom that are
not expected to impact calculations at that given scale and volume are discarded. The
truncated theory is renormalized by adjusting the parameters of the theory so a set of
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observables agree with experiment. This gives the parameters a dependence on the choice
of retained degrees of freedom. This is a truncation rather than an approximation. It
assumes that no additional parameters need to be introduced beyond what appears in the
truncated Hamiltonian and that there is a limit as the volume becomes infinite and resolution
becomes arbitrarily small. This is followed by two approximations. The first approximation
is to approximate the unitary time evolution operator for the truncated theory using the
Trotter product formula with N time slices:

UF (t) = e−iHF t =

lim
N→∞

(e−iHF (Π)∆te−iHF (Φ)∆t)N (174)

where ∆t = t/N and
HF = HF (Π) +HF (Φ) (175)

with
HF (Π) := 1

2
∑
n

ΠnΠn (176)

and
HF (Φ) := m2

2
∑
n

ΦnΦn +
∑
mn

DmnΦmΦn+

λ
∑
klmn

ΓklmnΦkΦlΦmΦn (177)

which expresses HF as the sum of a part with only the Πn fields and another part with only
the Φn fields. Since the discrete canonical pairs of field operators Φn and Πn satisfy canonical
commutation relations they have a continuous spectrum on the real line. This is because
each one of these complementary operators generates translations in the other operator. The
last step is to approximate the continuous spectrum of the discrete field operators Φn and Πn

by a collection of M = 2K + 1 closely spaced eigenvalues ϕn, πn = nϵ where −K ≤ n ≤ K

and ϵ2 = 2π/M . This is exactly what was done in the scattering example, except in this
case there are F degrees of freedom where F is the number of retained discrete field modes.
Unlike the truncation, both of these steps are mathematical approximations.

Let ⟨ϕϕϕ|χ⟩ = χ(n1ϵ, · · · , nF ϵ) be a localized function of the amplitudes of the F discrete
field modes that represent an initial free wave packet.

The goal is to use path integrals to calculate the time evolution of these coupled modes.
This gives a non-perturbative treatment of the truncated problem.
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For the field theory, before truncation, in the discrete representation the path integral
involves integrals over an infinite number of modes. The normalization of the complex
probability PX is such that summing over all modes in the absence of interactions gives 1.
This means that the only modes that contribute non-trivially to the time evolution are the

retained modes. The discrete approximation results in a sample space with a finite number
of discrete paths.

The Trotter approximation is

⟨n1, n2, · · ·nF |UF (t)|χ(0)⟩ =

lim
N→∞

⟨n1, n2, · · ·nF |(e−iHF (Π)∆te−iHF (Φ)∆t)N |χ(0)⟩. (178)

This can be evaluated by inserting complete sets of eigenstates of the complementary fields
between each of the operators. The following abbreviations are used for sums over interme-
diate states: ∫

dϕϕϕ = ϵF
K∑

n1=−K

· · ·
K∑

nF =−K

, (179)

for vectors representing a value of the eigenvalues of each of the F independent ϕ fields,

ϕϕϕ = (n1ϵ, · · · , nF ϵ) −K ≤ ni ≤ K, (180)

for vectors representing the value of the eigenvalues of each of the F independent π fields

πππ = (n1ϵ, · · · , nF ϵ) −K ≤ ni ≤ K (181)

and
γ = (ϕϕϕ0,ϕϕϕ1, · · · ,ϕϕϕN) (182)

for a “path” that ends at ϕϕϕ0 where ϕϕϕj (j > 0) represents values of each of the ϕn fields at
each of N time steps.

The following definitions are generalizations of the definitions in section VIII:

PX(ϕϕϕ′,ϕϕϕ,∆t) :=
∑
n′′

⟨ϕϕϕ′|πππ′′⟩e−iπππ′′·πππ′′∆tϵF ⟨πππ|ϕϕϕ⟩ϵF . (183)

It follows from (59) that PX(ϕϕϕ′,ϕϕϕ,∆t) has the property∑
n

PX(ϕϕϕ′,ϕϕϕ,∆t) = 1 (184)
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and
PX(ϕϕϕf ,ϕϕϕN , · · ·ϕϕϕ1) :=

PX(ϕϕϕf ,ϕϕϕN ,∆t)PX(ϕϕϕN ,ϕϕϕN−1,∆t) · · ·

PX(ϕϕϕ3,ϕϕϕ2,∆t)PX(ϕϕϕ2,ϕϕϕ1,∆t) (185)

also satisfies ∑
γ∈Γ

PX(ϕϕϕf ,ϕϕϕN , · · · ,ϕϕϕ1) = 1. (186)

Equation (185) represents the complex probability of a given path, where at each time slice
each of the F ϕ’s has one of the M allowed values between −Kϵ and Kϵ. Removing the last
factor of ϵF and only summing over ϕϕϕN · · ·ϕϕϕ2 gives the evolution due to free propagation

⟨ϕϕϕf |e−
i
2ΠΠΠ·ΠΠΠt|ϕϕϕ1⟩ =

∑
nnnn···nnn1

PX(ϕϕϕf ,ϕϕϕN , · · · ,ϕϕϕ1)ϵ−F . (187)

The full path integral including the effects of the interaction can be expressed as the expec-
tation of the following potential functional of the path γ

W [γ] := ei
∑

nHF (ϕϕϕn)∆t (188)

with respect to the complex probability distribution (186), where HF (ϕϕϕn) represents the
value of the ϕϕϕ-dependent part of the Hamiltonian evaluated at the value of the path γ at
the n-th time slice.

This gives the path integral approximation

⟨n1f , n2f , · · ·nFf |UF (t)|χ(0)⟩ =∑
γ

PX(ϕϕϕf ,ϕϕϕN , · · ·ϕϕϕ1)W [γ]χ(ϕϕϕ1) (189)

which again represents the path integral for fields as the expectation value of a potential
functional with respect to a complex probability distribution. As in the one degree of freedom
case this can be exactly factored into a product of one-time step operators

PX(ϕϕϕf ,ϕϕϕN , · · ·ϕϕϕ1)W [γ] =

X(ϕϕϕf ,ϕϕϕN ,∆t)eiHF (ϕϕϕN )∆tX(ϕϕϕN ,ϕϕϕN−1,∆t)eiHF (ϕϕϕN−1)∆t · · ·

X(ϕϕϕ3,ϕϕϕ2,∆t)eiHF (ϕϕϕ2)∆tX(ϕϕϕ2,ϕϕϕ1,∆t)eiHF (ϕϕϕ1)∆t. (190)
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This can be used to represent time evolution as the product of large approximate transfer
matrices.

Each stage the calculation uses finite mathematics. The use of the finite Weyl represen-
tation exactly preserves unitary at each level of approximation. Both the ϕϕϕ and πππ transfer
matrices are unitary and can be expressed exactly in the truncated model. This means that
the discrete Trotter approximation to time evolution is exactly unitary.

Figures nine and ten show calculations of the initial real and imaginary parts of the two
field modes. In this case the initial modes are real and taken to be Gaussians of the form

⟨ϕ1, ϕ2|ψ⟩ = Ne−
∑1

i=0(ϕi−⟨ϕi⟩)2/(4δϕ2
i ) (191)

Figures 11 and 12 show the real and imaginary parts of the time t = .5 evolved amplitudes
of the two discrete modes with M = 41 field values using N = 20 Trotter steps.

Figures 13 and 14 show plots of the real and imaginary parts of ϕ1 when ϕ2 = 0 at T = 0
and T = .5.

In the initial calculations the initial mean displacement and uncertainty of each mode
was taken to be .5. The initial state has no imaginary part but one develops due to the
non-zero displacement of the initial state. This truncation is too crude to contain any real
physics, however it illustrates the application of the discrete path integral to fields.

A more drastic truncation of the discretization of the continuum could be used to explore
the dynamics of fields with a larger number of modes.

The wavelet representation for the Hamiltonian satisfies a functional renormalization
group equation that could be used to reduce the number of amplitudes. This relates infinite
volume truncated Hamiltonians at different resolutions using a canonical transformation
along with mass, wave function, and coupling constant renormalizations:

Hk(Π,Φ, µ, λ) = 2kH0(2−kΠ, 2kΦ, 2−2kµ, 2−2kλ].

Realistic calculations require a large number of field modes. Time- dependent scattering
calculations of the type discussed in section 9 also require volumes sufficiently large for the
scattered fragments to become stable particles. These calculations cannot be performed on
a classical computer and will still be very challenging on a quantum computer.
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FIG. 9: Two modes (real) at T=0.0
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FIG. 11: Two modes (real) at T=0.5
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