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A formally exact discrete multi-resolution representation of quantum field theory on a light front
is presented. The formulation uses an orthonormal basis of compactly supported wavelets to expand
the fields restricted to a light front. The representation has a number of useful properties. First,
light-front preserving Poincaré transformations can be computed by transforming the arguments of
the basis functions. The discrete field operators, which are defined by integrating the product of the
field and a basis function over the light front, represent localized degrees of freedom on the light-front
hyperplane. These discrete fields are irreducible and the vacuum is formally trivial. The light-front
Hamiltonian and all of the Poincaré generators are linear combinations of normal ordered products
of the discrete field operators with analytically computable constant coefficients. The representation
is discrete and has natural resolution and volume truncations like lattice formulations. Because it is
formally exact it is possible to systematically compute corrections for eliminated degrees of freedom.

I. INTRODUCTION

A discrete multi-resolution representation of quantum field theory on a light front is presented. Light-front for-
mulations of quantum field theory have advantages for calculating electroweak current matrix elements in strongly
interacting states in different frames. Lattice truncations have proved to be the most reliable method for non-
perturbative calculations of strongly interacting states, but Lorentz transformation and scattering calculations are
not naturally formulated in the lattice representation. The purpose of this work is to investigate a representation of
quantum field theory that has some of the advantages of both approaches, although this initial work is limited to
canonical field theory rather than gauge theories.

In 1939 Wigner [1] showed that the independence of quantum observables in different inertial reference frames related
by Lorentz transformations and space-time translations requires the existence of a dynamical unitary representation
of Poincaré group on the Hilbert space of the quantum theory. Because there are many independent paths to the
future, consistency of the initial value problem requires that a minimum of three of the infinitesimal generators of the
Poincaré group are interaction dependent. In 1949 P. A. M. Dirac [2] introduced three “forms of relativistic dynamics”
that are characterized by having the largest interaction-independent subgroups.

Dirac’s ‘front-form dynamics’ is the only form of dynamics with the minimal number, 3, of dynamical Poincaré
generators. The interaction-independent subgroup is the seven-parameter subgroup that leaves the hyperplane,

x+ = x0 + n̂ · x = 0 (1)

invariant. The light-front representation of quantum dynamics has several advantages. One is that the kinematic
(interaction-independent) subgroup has a three-parameter subgroup of Lorentz boosts. The subgroup property means
that there are no Wigner rotations for light-front boosts. A consequence is that the magnetic quantum numbers of
the light-front spin are invariant with respect to these boosts. A second advantage is that the boosts are independent
of interactions. This means that boosts can be computed by applying the inverse transform to non-interacting basis
states. These properties simplify theoretical treatments of electroweak probes of strongly-interacting systems, where
the initial and final hadronic states are in different Lorentz frames.

In light-front quantum field theory [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] there are additional advantages.
These are consequences of the spectrum of the generator

p+ = p0 + n̂ · p ≥ 0 (2)

of translations in the

x− = x0 − n̂ · x (3)

direction tangent to the light-front. The first property is that free fields restricted to the light-front are irreducible.
This means that both the creation and annihilation operators for a free field can be constructed from the field restricted
to the light front. It follows that any operator on the free field Fock space can be expressed as a function of free fields
restricted to the light front. The second advantage is that interactions that commute with the interaction-independent
subgroup leave the Fock vacuum invariant. This means that it is possible to express all of the Poincaré generators
as operators on the free-field Fock space. There are ultraviolet and infrared (p+ = 0) singularities in the light-front
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Hamiltonian due to local operator products, which could impact these properties, however in an effective theory with
ultraviolet and infrared cutoffs the interaction still leaves the Fock vacuum invariant and the light-front Hamiltonian
can still be represented as a function of the free fields on the light front.

Having an explicit vacuum along with an expression for the light-front Hamiltonian,

P− = P 0 −P · n, (4)

in terms of the algebra of fields on the light front means that it is possible to perform non-perturbative calculations
by diagonalizing the light-front Hamiltonian in the light-front Fock space.

In a given experiment there is a relevant volume and a finite amount of available energy. The available energy limits
the resolution of the accessible degrees of freedom. The number of degrees of freedom with the limiting resolution
that fit in the experimental volume is finite. It follows that it should be possible to accurately calculate experimental
observables using only these degrees of freedom.

Wavelets can be used to represent fields on the light front as linear combinations of discrete field operators with
different resolutions. This provides a natural representation to make both volume and resolution truncations consistent
with a given reaction. In addition the representation is discrete, which is a natural representation for computations.
Finally the basis functions are self-similar, so truncations with different resolutions have a similar form.

There are many different types of wavelets that have been discussed in the context of quantum field theory
[15][16][17][18] [19][20][21][22] [23][24] [25][26][27][28] [29][31][32][33] [34][35][36]. The common feature is that the differ-
ent functions have a common structure related by translations and scale transformations. This work uses Daubechies’
wavelets [37][38][39][40][41]. These have the property that they are an orthonormal basis of functions with compact
support. The price paid for the compact support is that they have a limited smoothness. It is also possible to use a
wavelet basis of Schwartz functions that are infinitely differentiable, but these functions do not have compact support.

This work is an extension to the light front of the wavelet representations of quantum field theory used in references
[28] [25] [35]. The notation and development of the wavelet bases is identical to the development in these references.
The difference is that the algebra generated by the discrete fields and conjugate generalized momenta in these papers
is replaced by the irreducible algebra of fields on a light front. The light-front representation is formally exact and
has all of the advantages of any other representation of light-front field theories.

There are several motivations for considering this approach. These include

1. Volume and resolution truncations can be performed naturally, the resulting truncated theory is similar to a
lattice truncation [42][43], in the sense that it is a theory involving a finite number of discrete degrees of freedom
associated with a given volume and resolution.

2. While the degrees of freedom are discrete, the field operators have a continuous space-time dependence. Kine-
matic Lorentz transformations can be computed by transforming the arguments of the basis functions. While
truncations necessarily break kinematic Lorentz invariance, kinematic Lorentz transformations can still be ap-
proximated by transforming the arguments of the basis functions.

3. Even though some truncations may lead to states with energy below the Fock vacuum energy, the error in using
the free Fock vacuum as the lowest mass state of the truncated theory is due to corrections that arise from the
discarded degrees of freedom.

4. Since the representation is formally exact and x+ is a continuous variable, there is a formulation of Haag-Ruelle
[44][45] [46] scattering in this representation. Approximation methods need to be developed in the presence of
truncations.

Some of the possible applications of the wavelet representation were discussed in [25] in the context of canonical field
theory. There are a number of applications involving free fields that are straightforward and should be instructive. The
advantage of free fields is that they can be solved and used as a testing ground in order to get an initial understanding
of the convergence of truncated theories. One such application is understanding the restoration of Poincaré invariance
in truncated theories as the resolution is improved. An advantage of the wavelet representation is that this can be
checked locally, i.e. in a small volume [25]. Understanding the restoration of Lorentz invariance is important for
approximating current matrix elements. Another application involving free fields is to test the convergence of free
field commutator functions or Wightman functions based on truncated fields to the exact expressions. These can be
approximated by iterating the Heisenberg field equations, which are simple in the free field case. This could provide
some insight into the nature of convergence in interacting theories. In [35] flow equation methods were used block
diagonalize the Hilbert space of a truncated free field theory by resolution, constructing an effective Hamiltonian that
involves only coarse-scale degrees of freedom, but includes the dynamics of the eliminated degrees of freedom. This
calculation provided some insight into the complementary roles played by volume and resolution truncations.
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While the elementary calculations discussed above can provide insight into the nature of approximations, the long-
term goal is to use the wavelet representation to perform calculations of observables in 3+1 dimensional field theories.
Calculations in 3+1 dimensions are considerably more complicated for interacting theories. One computational method
is to use the fields to construct a basis by applying discrete operators to the vacuum, and then diagonalizing the light-
front Hamiltonian in that basis. The light-front representation has the advantage that it is not necessary to first solve
the vacuum problem. This method should be useful for modeling composite states that are spatially localized. This
Hamiltonian approach is in the same spirit as the basis light front quantization approach used in [47]. Variational
methods could also be employed for low-lying composite states. Another method that takes advantage of the discrete
nature of the wavelet representation is to use the light-front Heisenberg equations to generate an expansion of the
field as a linear combination of products of fields restricted to the light front. Correlation functions can be computed
by evaluating products of these fields in the light-front vacuum. In this case while the algebra is discrete, the number
of terms grows with each iteration. One of the advantage of the wavelet representation is that interactions involving
different modes are self-similar and differ only by multiplicative scaling coefficients. A detailed study of the scaling
properties could help to formulate efficient approximations to the solution of the light-front Heisenberg field equations
by eliminating irrelevant degrees of freedom. Another potential use of the wavelet representation would be in quantum
computing. In the wavelet representation the field is replaced by discrete modes that only interact locally. This allows
evolution over short time steps to be represented by quantum circuits involving products of local interactions.

This paper consists of thirteen sections. The next section introduces the notation that will be used in this work,
defines the light-front kinematic subgroup and the Poincaré generators that generate both the kinematic and dynamical
Poincaré transformations. Section three discusses the irreducibility of free fields on the light front and properties of
kinematically invariant interactions. Section four discusses the structure of Poincaré generators on the light front
using Noether’s theorem. The wavelet basis is constructed from the fixed point of a renormalization group equation in
section five. Wavelet representations of fields restricted to the light front are defined in section six. Section seven has a
short discussion on kinematic Poincaré transformations of the fields in the light-front representation. In section eight
the irreducibility of the light-front free-field algebra and the triviality of the light-front vacuum are used to construct
vectors in the light-front Fock space. Dynamical equations in the light-front wavelet representation are discussed in
section nine. Dynamical computations require expressions for the commutator of discrete fields on the light front,
which are computed in section ten. In section eleven the coefficients of the expansion of all ten Poincaré generators
as polynomials of discrete fields on the light front are computed. Section twelve discusses truncations and section
thirteen gives a summary and outlook.

II. NOTATION

The light front is a three-dimensional hyperplane that is tangent to the light cone. It is defined by the constraint

x+ := x0 + n̂ · x = 0. (5)

It is natural to introduce light-front coordinates of the four-vector xµ:

x± := x0 ± n̂ · x, x⊥ = n̂× (x× n̂). (6)

The components

x̃ := (x−,x⊥) (7)

are coordinates of points on the light-front hyperplane. These will be referred to as light-front 3-vectors. In what
follows the light front defined by n̂ = ẑ will be used.

The contravariant light-front components are

x± = −x∓ xi⊥ = xi⊥ (8)

and the Lorentz-invariant scalar product of two light-front vectors is

x · y := −1

2
x+y− − 1

2
x−y+ + x⊥ · y⊥ =

1

2
(x+y+ + x−y−) + x1y1 + x2y2. (9)

For computational purposes it is useful to represent four vectors by 2× 2 Hermitian matrices. The coordinate matrix
is constructed by contracting the four vector xµ with the Pauli matrices and the identity:

X = xµσµ =

(
x+ x∗⊥
x⊥ x−

)
xµ =

1

2
Tr(σµX) x⊥ = x1 + ix2. (10)
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In this matrix representation Poincaré transformations continuously connected to the identity are represented by

X → X ′ = ΛXΛ† +A Λ ∈ SL(2,C) A = A†. (11)

The subgroup of the Poincaré group that leaves x+ = 0 invariant consists of pairs of matrices (Λ, A) in (11) of the
form

Λ =

(
a 0
c 1/a

)
A =

(
0 b∗⊥
b⊥ b−

)
(12)

where a,c and b⊥ are complex and b− is real. This is a seven- parameter group. The SL(2,C) matrices with real a
represent light-front preserving boosts. They can be parameterized by the light-front components of the four velocity
v = p/m:

Λf (p/m) :=

( √
p+/m 0
p⊥/m√
p+/m

1/
√
p+/m

)
=

( √
v+ 0

v⊥/
√
v+ 1/

√
v+

)
. (13)

These lower triangular matrices form a subgroup. The inverse light-front boost is given by

Λ−1f (p/m) :=

(
1/
√
p+/m 0

− p⊥/m√
p+/m

√
p+/m

)
=

(
1/
√
v+ 0

−v⊥/
√
v+
√
v+

)
(14)

while the adjoint and the inverse adjoint of these matrices are

Λ†f (p/m) :=

( √
p+/m

p∗⊥/m√
p+/m

0 1/
√
p+/m

)
=

( √
v+ v∗⊥/

√
v+

0 1/
√
v+

)
(15)

((Λf )†)−1(p/m) :=

(
1/
√
p+/m − p∗⊥/m√

p+/m

0
√
p+/m

)
=

(
1/
√
v+ −v∗⊥/

√
v+

0
√
v+

)
. (16)

General Poincaré transformations are generated by 10 independent one-parameter subgroups. Seven of the one-
parameter groups leave the light front invariant. The remaining three one-parameter groups map points on the light
front to points off of the light front. These are called kinematic and dynamical transformations respectively. The
kinematic one-parameter groups in the 2× 2 matrix representation and the corresponding unitary representations of
these groups are related by

Λ(λ) =

(
1 0
λ 1

)
U(Λ(λ)) = eiE

1λ Λ(λ) =

(
1 0
iλ 1

)
U(Λ(λ)) = eiE

2λ (17)

Λ(λ) =

(
eλ/2 0

0 e−λ/2

)
U(Λ(λ)) = eiK

3λ Λ(λ) =

(
eiλ/2 0

0 e−iλ/2

)
U(Λ(λ)) = eiJ

3λ (18)

A(λ) =

(
0 λ
λ 0

)
U(Λ(λ)) = eiP

1λ. A(λ) =

(
0 −iλ
iλ 0

)
U(Λ(λ)) = eiP

2λ. (19)

A(λ) =

(
0 0
0 λ

)
U(Λ(λ)) = e−

i
2P

+λ. (20)

The corresponding dynamical transformations are

Λ(λ) =

(
1 λ
0 1

)
U(Λ(λ)) = eiF

1λ Λ(λ) =

(
1 −iλ
0 1

)
U(Λ(λ)) = eiF

2λ (21)

A(λ) =

(
λ 0
0 0

)
U(Λ(λ)) = e−

i
2P
−λ. (22)
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Relations (17-20) define the infinitesimal generators

{P+, P 1, P 2, E1, E2,K3, J3} (23)

of the kinematic transformations, while (21-22) define the infinitesimal generators

{P−, F 1, F 2} (24)

of the dynamical transformations. With these definitions the light-front Poincaré generators are related to components
of the angular momentum tensor

Jµν =

 0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

 (25)

by

E1 = K1 − J2 E2 = K2 + J1 F 1 = K1 + J2 F 2 = K2 − J1. (26)

The inverse relations are

K1 =
1

2
(E1 + F 1) K2 =

1

2
(E2 + F 2) J1 =

1

2
(E2 − F 2) J2 =

1

2
(F 1 − E1). (27)

F 1 and F 2 could be replaced by J1 and J2 as dynamical generators.
The evolution of a state or operator with initial data on the light front is determined by the light-front Schrödinger

equation

i
d|ψ(x+)〉
dx+

=
1

2
P−|ψ(x+)〉 (28)

or the light-front Heisenberg equations of motion

dO(x+)

dx+
=
i

2
[P−, O(x+)]. (29)

When P− is a self-adjoint operator the dynamics is well-defined and given by the unitary one-parameter group (22).
The Poincaré Lie algebra has two polynomial invariants. The mass squared is

M2 = P+P− −P2
⊥ (30)

which gives the light-front dispersion relation

P− =
M2 + P2

P+
. (31)

The other invariant is the inner product of the Pauli-Lubanski vector,

Wµ =
1

2
εµναβPνJαβ , (32)

with itself

W 2 = WµWµ = M2s2. (33)

The Pauli-Lubanski vector has components

W 0 = P · J W = HJ + P×K (34)

or expressed in terms of the light-front Poincaré generators

W+ = P+J · ẑ + (P×E) · ẑ (35)
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W⊥ =
1

2
(P+ẑ× F− P−ẑ×E)− (ẑ ·K)ẑ×P (36)

W− = P−J · ẑ− (P× F) · ẑ. (37)

In order to compare the spins of particles in different frames, it is useful to transform both particles to their rest
frame using an arbitrary but fixed set of Lorentz transformations parameterized by the four velocity of the particle.
The light-front spin is the angular momentum measured in the particle or system rest frame when the particles or
system are transformed to the rest frame with the inverse light-front preserving boosts (14)

s · ẑ = J · ẑ− (E×P) · ẑ
P+

=
W+

P+
(38)

s⊥ = (W⊥ −P⊥W
+/P+)/M. (39)

The components of the light-front spin can also be expressed directly in terms of Jµν

si =
1

2
εijk(Λ−1lf )jµ(P/M)(Λ−1lf )kν(P/M)Jµν (40)

where in (40) the P/M in the Lorentz boosts are operators.

III. FIELDS

Light-front free fields can be constructed from canonical free fields by changing variables p → p̃, where p̃ :=
(p+, p1, p2) are the components of the light front-momentum conjugate to x̃. The Fourier representation of a free
scalar field of mass m and its conjugate momentum operator are

φ(x) =
1

(2π)3/2

∫
dp√

2ωm(p)

(
eip·xa(p) + e−ip·xa†(p)

)
(41)

π(x) = − i

(2π)3/2

∫
dp

√
ωm(p)

2

(
eip·xa(p)− e−ip·xa†(p)

)
(42)

where ωm(p) :=
√
m2 + p2 is the energy of a particle of mass m, p is its three-momentum and x·p := −ωm(p)x0+p·x.

Changing variables from the three momentum, p, to the light-front components, p̃ = (p+, p1, p2), of the four
momentum gives the light-front Fourier representation of φ(x):

φ(x) =
1

(2π)3/2

∫
dp+θ(p+)√

2p+
dp⊥

(
eip·xã(p̃) + e−ip·xã†(p̃)

)
(43)

where

| ∂(p1, p2, p2)

∂(p+, p1, p2)
| = ωm(p)

p+
p · x = −1

2
(
p2
⊥ +m2

p+
x+ + p+x−) + p⊥ · x⊥ (44)

and

ã(p̃) := ã(p+,p⊥) = a(p)

√
ωm(p)

p+
. (45)

It follows from

[a(p), a†(p′)] = δ(p− p′) (46)

and (44) and (45) that

[a(p̃), a†(p̃′)] = δ(p̃− p̃′). (47)
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The spectral conditions

P± = H ± P 3 =
√
M2 + P2 ± P 3 ≥ 0 (48)

P− =
M2 + P2

P+
≥ 0 (49)

imply that it is possible to independently construct both a(p̃) and a†(p̃) from the field φ(x+ = 0, x̃) restricted to the
light front. This can be done by computing the partial Fourier transform of the field on the light front:

φ(x+ = 0, p+,p⊥) =
1

(2π)3/2

∫
eip

+x−/2−ip⊥·x⊥φ(x+ = 0, x−,x⊥)
dx⊥dx

−

2
. (50)

The creation and annihilation operators can be read off of this expression

ã(p̃) =

√
p+

2
θ(p+)φ(x+ = 0, p+,p⊥) (51)

ã†(p̃) =

√
p+

2
θ(p+)φ(x+ = 0,−p+,p⊥). (52)

Both operators are constructed directly from the field restricted to the light front without constructing a generalized
momentum operator. This means that φ(x) restricted to the light front defines an irreducible set of operators. It
follows that any operator O on the Fock space that commutes with φ(x+ = 0, x̃) at all points on the light front must
be a constant multiple of the identity:

[φ(x+ = 0, x̃), O] = 0→ O = cI. (53)

An important observation is that the only place where the mass of the field appears is in the expression for the
coefficient of x+. When the field is restricted to the light front, x+ → 0, all information about the mass (and
dynamics) disappears.

This is in contrast to the canonical case because the canonical transformation that relates free canonical fields and
their generalized momenta with different masses cannot be realized by a unitary transformation [48]. When these
fields are restricted to the light front they become unitarily equivalent [10]. This is because dynamical information
that distinguishes the different representations is lost as a result of the restriction.

Since the fields restricted to the light front are irreducible, the canonical commutation relations are replaced by the
commutator of the fields at different points on the light front

[φ(x+ = 0, x̃), φ(y+ = 0, ỹ)] =
i

2π

∫
dp+θ(p+)

p+
e−

i
2p

+(x−−y−) − e i
2p

+(x−−y−)

2i
δ(x⊥ − y⊥) = (54)

− i

2π

∫
dp+θ(p+)

p+
sin(

1

2
p+(x− − y−))δ(x⊥ − y⊥) = − i

4
ε(x− − y−)δ(x⊥ − y⊥). (55)

Note that while the x− derivative gives

∂

∂x−
[φ(x+ = 0, x̃), φ(y+ = 0, ỹ)] = − i

2
δ(x− − y−)δ(x⊥ − y⊥), (56)

∂−φ(x) is not the canonical momentum.
Interactions that preserve the light-front kinematic symmetry must commute with the kinematic subgroup. In

particular they must be invariant with respect to translations in the x− direction. This means that the interactions
must commute with P+, which is a kinematic operator. Since, P+ =

∑
i P

+
i , is kinematic, the vacuum of the field

theory is invariant with respect to these translations, independent of interactions. This requires that

[P+, V ] = 0 P+|0〉 = 0 (57)

which implies

P+V |0〉 = V P+|0〉 = 0 (58)
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where |0〉 is the free-field Fock vacuum. This means that V |0〉 is an eigenstate of P+ with eigenvalue 0. Inserting a
compete set of intermediate states between V † and V in 〈0|V †V |0〉, the absolutely continuous spectrum of p+i cannot
contribute to the sum over intermediate states because p+i = 0 is a set of measure 0. This means that

V |0〉 = |0〉〈0|V |0〉 (59)

or interactions that preserve the kinematic symmetry leave the free-field Fock vacuum unchanged.
The observation that the interaction leaves the vacuum invariant implies that it is an operator on the free-field

Fock space. The irreducibility of the light front-Fock algebra means that the interaction can be expressed in terms
of fields in this algebra. The Poincaré generators, defined by integrating the + components of the Noether currents
that come from Poincaré invariance of the action over the light front, are also linear in this interaction. This means
that it should be possible to solve for the relativistic dynamics of the field on the light-front Fock space.

A more careful analysis shows that the interaction, while formally leaving the light front invariant, has singularities
at p+ = 0, so the formal expressions for the interaction-dependent generators are not well-defined self-adjoint operators
on the free field Fock space. This is because the interaction contains products of operator-valued distributions which
are not defined. Discussions of the non-triviality of the light-front vacuum and the associated “zero-mode” problem,
which is the subject of many papers, can be found in [7][49] [50][51] [52][53][54][55] and the references cited therein.

The expressions for the Poincaré generators are defined on the free-field Fock space if infrared and ultraviolet cutoffs
are introduced, but the cutoffs break the Poincaré symmetry. The non-trivial problem is how to remove the cutoffs
in a manner that recovers the Poincaré symmetry.

While the solution of this last problem is equivalent to the unsolved problem of giving a non-perturbative definition
of the theory, cutoff theories should lead to good approximations for observables on scales where the cutoffs are not
expected to be important.

IV. FORMAL LIGHT-FRONT FIELD DYNAMICS

The Lagrangian density for a scalar field theory is

L(φ(x)) = −1

2
ηµν∂µφ(x)∂νφ(x)− 1

2
m2φ(x)2 − V (φ(x)) (60)

where ηµν is the metric tensor with signature (−,+,+,+). The action is

A[V, φ] =

∫
V

d4xL(φ(x)). (61)

Variations of the field that leave the action stationary satisfy the field equation:

∂2φ(x)

∂(x0)2
−∇∇∇2φ(x) +m2φ(x) +

∂V (φ)

∂φ(x)
= 0. (62)

Changing to light-front variables the partial derivatives become

∂0 :=
∂

∂x0
=
∂x+

∂x0
∂

∂x+
+
∂x−

∂x0
∂

∂x−
=

∂

∂x+
+

∂

∂x−
= ∂+ + ∂− (63)

∂3 :=
∂

∂x3
=
∂x+

∂x3
∂

∂x+
+
∂x−

∂x3
∂

∂x−
=

∂

∂x+
− ∂

∂x−
= ∂+ − ∂−. (64)

Squaring and subtracting gives

∂2

∂(x0)2
− ∂2

∂(x3)2
= 4

∂

∂x+
∂

∂x−
. (65)

It follows that the Lagrangian density (60) and the field equation in light-front variables have the forms

L(φ(x)) = 2∂−φ(x)∂+φ(x)− 1

2
∇∇∇⊥φ(x) · ∇∇∇⊥φ(x)− 1

2
m2φ(x)2 − V (φ(x)) (66)
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and

4∂+∂−φ(x)−∇∇∇2
⊥φ(x) +m2φ(x) +

∂V (φ)

∂φ(x)
= 0. (67)

Invariance of the action under infinitesimal changes in the fields and coordinates

φ(x)→ φ′(x′) = φ(x) + δφ(x) xµ → x′µ + δxµ(x), (68)

along with the field equation, leads to the conserved Noether currents

∂µJ
µ(x) = 0 (69)

where the Noether current is

Jµ(x) = Lηµνδxν +
∂L(φ)

∂(∂µφ)
(δφ(x)− ∂νδxν). (70)

The Noether currents associated with translational and Lorentz invariance of the action are the energy momentum,
Tµν , and angular momentum Mµαβ tensors

∂µT
µν = 0 ∂µM

µαβ = 0 (71)

where for the Lagrangian density (66):

Tµν = ηµνL(φ(x)) + ∂µφ(x)∂νφ(x) (72)

Mµαβ = Tµαxβ − Tµβxα. (73)

Integrating the + component of the conserved current over the light front, assuming that the fields vanish on the
boundary of the light front, give the light-front conserved (independent of x+) charges

d

dx+
Pµ = 0

d

dx+
Jαβ = 0 (74)

where

Pµ :=

∫
dx⊥dx

−

2
T+µ =

∫
dx⊥dx

−

2
(T 0µ + T 3µ) (75)

and

Jαβ :=

∫
dx⊥dx

−

2
M+αβ =

∫
dx⊥dx

−

2
((T 0α + T 3α)xβ − (T 0β + T 3β)xα). (76)

These are the conserved four momentum and angular-momentum tensors. They are independent of x+ and thus can
be expressed in terms of fields and derivatives of fields restricted to the light front.

In order to construct the Poincaré generators the first step is to express the + component of the energy-momentum
tensor and angular-momentum tensors in terms of fields on the light front:

T++ = 4∂−φ(x)∂−φ(x) (77)

T+i = −2∂−φ(x)∂iφ(x) (78)

T+− =∇∇∇⊥φ(x) · ∇∇∇⊥φ(x) +m2φ2(x) + 2V (φ(x)) (79)

M++− = 4∂−φ(x)∂−φ(x)x− − (∇∇∇⊥φ(x) · ∇∇∇⊥φ(x) +m2φ2(x) + 2V (φ(x))x+ (80)

M++i = 4∂−φ(x)∂−φ(x)xi + 2∂−φ(x)∂iφ(x)x+ (81)
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M+−i = (∇∇∇⊥φ(x) · ∇∇∇⊥φ(x) +m2φ2(x) + 2V (φ(x))xi + 2∂−φ(x)∂iφ(x)x− (82)

M+ij = −2∂−φ(x)∂iφ(x)xj + 2∂−φ(x)∂jφ(x)xi. (83)

The Poincaré generators are constructed by integrating these operators over the light front

P+ = 4

∫
dx−d2x⊥

2
∂−φ(x)∂−φ(x) (84)

P i = −2

∫
dx−d2x⊥

2
∂−φ(x)∂iφ(x) (85)

P− =

∫
dx−d2x⊥

2

(
∇∇∇⊥φ(x) · ∇∇∇⊥φ(x) +m2φ2(x) + 2V (φ(x)

)
(86)

J+− =

∫
dx−d2x⊥

2

(
4∂−φ(x)∂−φ(x)x− − (∇∇∇⊥φ(x) · ∇∇∇⊥φ(x) +m2φ2(x) + 2V (φ(x))x+

)
(87)

J+i =

∫
dx−d2x⊥

2

(
4∂−φ(x)∂−φ(x)xi + 2∂−φ(x)∂iφ(x)x+

)
(88)

J−i =

∫
dx−d2x⊥

2

(
(∇∇∇⊥φ(x) · ∇∇∇⊥φ(x) +m2φ2(x) + 2V (φ(x))xi + 2∂−φ(x)∂iφ(x)x−

)
(89)

J ij =

∫
dx−d2x⊥

2

(
−2∂−φ(x)∂iφ(x)xj + 2∂−φ(x)∂jφ(x)xi

)
. (90)

For free fields these operators can be expressed in terms of the light-front creation and annihilation operators (51-52)
using the identities ∫

dx−d2x⊥
2

: φ(x)φ(x) :=

∫
θ(p+)dp+d2p⊥

p+
ã†(p̃)ã(p̃) (91)

∫
dx−d2x⊥

2
: ∂−φ(x)∂−φ(x) :=

1

4

∫
θ(p+)dp+d2p⊥ã

†(p̃)p+ã(p̃) (92)

∫
dx−d2x⊥

2
: ∂−φ(x)∂iφ(x) := −1

2

∫
θ(p+)dp+d2p⊥ã

†(p̃)piã(p̃) (93)

∫
dx−d2x⊥

2
: ∂iφ(x)∂iφ(x) :=

∫
θ(p+)dp+d2p⊥

p+
ã†(p̃)(pi)2ã(p̃). (94)

Using (91-94) in (84-90) gives the following expressions for the Poincaré generators for a free field in terms of the
light-front creation and annihilation operators

P+ =

∫
dp+d2p⊥θ(p

+)ã†(p̃)p+ã(p̃) (95)

P i =

∫
dp+d2p⊥θ(p

+)ã†(p̃)piã(p̃) (96)
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P− =

∫
dp+d2p⊥θ(p

+)ã†(p̃)
p2
⊥ +m2

p+
ã(p̃) (97)

J+− =

∫
dp+d2p⊥θ(p

+)ã†(p̃)(p+(−2i
∂

∂p+
)− x+p2

⊥ +m2

p+
)ã(p̃) (98)

J+i =

∫
dp+d2p⊥θ(p

+)ã†(p̃)((p+(i
∂

∂pi
)− pix+)ã(p̃) (99)

J−i =

∫
dp+d2p⊥θ(p

+)ã†(p̃)(
p2
⊥ +m2

p+
(i
∂

∂pi
)− 2pi(−i ∂

∂p+
))ã(p̃) (100)

J ij =

∫
dp+d2p⊥θ(p

+)ã†(p̃)(pj(−i ∂
∂pi
− pi(−i ∂

∂pj
))ã(p̃). (101)

Since these are independent of x+, the expressions with an explicit x+ dependence can be evaluated at x+ = 0. These
expressions lead to the following identifications

J+− = −2K3 J+1 = K1 − J2 = E1 J+2 = K2 + J1 = E2 (102)

J−1 = K1 + J2 = F 1 J−2 = K2 − J1 = F 2. (103)

V. WAVELET BASIS

In this section the multi-resolution basis that is used to represent the irreducible algebra of fields on the light front
is introduced. Wavelets provide a natural means for exactly decomposing a field into independent discrete degrees of
freedom labeled by volume and resolution. In this representation there are natural truncations that eliminate degrees
of freedom associated with volumes and resolutions that are expected to be unimportant in modeling a given reaction.

While there are many different types of wavelets, this application uses Daubechies [37][38] L = 3 wavelets. These
are used to generate an orthonormal basis of functions with the following desirable properties: (1) all of the basis
functions have compact support (2) there are an infinite number of basis functions with compact support inside of
any open set (3) the basis functions have one continuous derivative (4) polynomials of degree 2 can be point-wise
represented by locally-finite linear combinations of these basis functions.

In what follows these basis functions will be used to decompose fields restricted to a light front into an infinite linear
combination of discrete operators with arbitrarily fine resolutions. The advantage of the light-front representation is
that the resulting discrete algebra is irreducible and the vacuum remains trivial.

For Lagrangians that are polynomials in the fields, in the wavelet representation all of the Poincaré generators can
be formally expressed as polynomials in the discrete fields on the light front with coefficients that can be computed
analytically. While the polynomials are finite degree, there are an infinite number of discrete field operators.

The construction of the wavelet basis starts with the fixed-point solution of the renormalization group equation

s(x) =

2L−1∑
l=0

hlDT
ls(x) (104)

where

Df(x) :=
√

2f(2x) and Tf(x) := f(x− 1) (105)

are unitary scale transformations and translations. The fixed point, s(x), is a linear combination of a weighted sum of
translates of itself on a smaller scale by a factor of 2. The weights hl are constant coefficients chosen so s(x) satisfies∫

Tms(x)Tns(x) = δmn and xk =
∑
n

cknT
ns(x) k < L point-wise. (106)
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TABLE I: Scaling Coefficients for Daubechies L=3 Wavelets

h0 (1 +
√

10 +
√

5 + 2
√

10 )/16
√

2

h1 (5 +
√

10 + 3
√

5 + 2
√

10 )/16
√

2

h2 (10− 2
√

10 + 2
√

5 + 2
√

10 )/16
√

2

h3 (10− 2
√

10− 2
√

5 + 2
√

10 )/16
√

2

h4 (5 +
√

10− 3
√

5 + 2
√

10 )/16
√

2

h5 (1 +
√

10−
√

5 + 2
√

10 )/16
√

2

There are different weights hl for different values of L. The L = 3 weights are the algebraic numbers in table 1.
Solving (104) is analogous to finding a fixed point of a block spin transformation, except the averaging over blocks is
replaced by a weighted average.

The solution of the renormalization group equation (104) is a fractal valued function that has compact support for
x ∈ [0, 2L − 1]. For L = 3 the solution has one continuous derivative with support on the interval [0, 5]. Since the
scale can be changed by a general unitary scale transformation, a scale is fixed by the convention∫

s(x)dx = 1. (107)

Because s(x) is fractal valued it cannot be represented in terms of elementary functions, however it can be exactly
calculated at all dyadic rationals using the renormalization group equation (104). It can also be approximated by
iterating the renormalization group equation starting with a seed function satisfying (107). The evaluation of s(x) is
not necessary because most of the integrals that are needed in field theory applications can be evaluated exactly using
the renormalization group equation. The integrals can be expressed in terms of solutions of finite linear systems of
equations involving the numerical weights hl in table 1.

The next step in constructing the wavelet basis is to construct subspaces of L2(R) with different resolutions defined
by

Sk := {f(x)|f(x) =
∑
n

cnD
kTns(x)

∑
n

|cn|2 <∞}. (108)

The resolution is determined by the width of the support of these functions, which for L = 3, is 5×2−k. The functions

skn(x) := DkTn(x)s(x), (109)

for fixed k, are orthonormal, have compact support on [2−kn, 2−k(n+ 5)], satisfy∫
skn(x)dx = 2−k/2 (110)

and are locally finite partitions of unity ∑
n

2k/2skn(x) = 1. (111)

The subspace Sk is called the resolution 2−k subspace of L2(R).
The scale transformation D has the following intertwining properties with translations and derivatives:

TD = DT 2 and
d

dx
D = 2D

d

dx
. (112)

Applying DkTn to the renormalization group equation, using (112), gives

skn(x) =

2L−1∑
l=0

hlD
k+1T 2n+ls(x) =

2L−1∑
l=0

hls
k+1
2n+l(x) (113)

which expresses every basis element of Sk as a finite linear combination of basis elements of Sk+1 or

Sk ⊂ Sk+1. (114)
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This means that the lower resolution subspaces are subspaces of the higher resolution subspaces. The orthogonal
complement of Sk in Sk+1 is called Wk:

Sk+1 = Sk ⊕Wk. (115)

Since Wk ⊂ Sk+1, orthonormal basis functions wkn(x) in Wk are also linear combinations of the sk+1
n (x). These

functions are defined by

wkn(x) = DkTnw(x) (116)

where w(x) is the “mother wavelet” defined by

w(x) :=

2L−1∑
l=0

glDT
ls(x) (117)

and the coefficients gl are related to the weight coefficients hl by

gl = (−)lh2L−1−l 0 ≤ l ≤ 2L− 1. (118)

The orthonormal basis functions wkn(x) for Wk are called wavelets. Since the wkn(x) are finite linear combinations of
the sk+1

n (x) they have the same number of derivatives as s(x). wkn(x) also has the same support as skn(x). Finally it
follows from (106) that ∫

xmwkn(x) = 0 0 ≤ m < L. (119)

Equation (119) is equivalent to the condition (106). Equation (115) means that the wavelet subspace Wk consists of
functions that increase the resolution of Sk from 2−k to 2−(k+1).

The inclusions (114) imply a decomposition of Sk+n into an orthogonal direct sum of the form

Sk+n =Wk+n−1 ⊕Wk+n−2 ⊕ · · · ⊕Wk ⊕ Sk (120)

which indicates that the resolution of Sk can be increased to 2−k−n by including additional basis functions in the
subspaces {Wk+n−1, · · · ,Wk}. This can be continued to arbitrarily fine resolutions to get all of L2(R):

L2(R) = Sk ⊕∞n=0Wk+n = ⊕∞n=−∞Wn. (121)

Since all of the subspaces are orthogonal, an orthonormal basis for L2(R) consists of

{skn(x)}∞n=−∞ ∪ {wmn (x)}∞n=−∞,m=k (122)

for any fixed starting resolution 2−k or

{wkn(x)}∞k,n=−∞. (123)

The basis (123) includes functions of arbitrarily large support, while the basis (122) consists of functions with support
in intervals of width 2−l(2L− 1) for l ≥ k.

The basis (122) is used with L = 3 Daubechies wavelets [37][38]. Locally finite linear combinations of the L = 3
scaling functions, skn(x), can be used to point-wise represent polynomials of degree 2. The wavelets, wln(x), are
orthogonal to these polynomials. The L = 3 basis functions have one continuous derivative.

VI. WAVELET REPRESENTATION OF QUANTUM FIELDS

In what follows the basis (122) is used to expand quantum fields restricted to a light front. It is useful to think of
the starting scale 2−k in (122) as the resolution that is relevant to experimental measurements. The higher resolution
degrees of freedom are used to represent shorter distance degrees of freedom that couple to experimental-scale degrees
of freedom.

The basis (122) can be used to get a formally exact representation of the field operators of the form

φ(x̃, x+) :=
∑

φlmn(x+)ξl(x
−)ξm(x1)ξn(x2) where φlmn(x+) =

∫
d2x⊥dx

−ξl(x
−)ξm(x1)ξn(x2)φ(x̃, x+)

(124)
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and the ξl are the basis functions

ξl(x) ∈ {skn(x)}∞n=−∞ ∪ {wmn (x)}∞n=−∞,m=k. (125)

In what follows the short-hand notation is used

ξn(x̃) := ξn−(x−)ξn1(x1)ξn2(x2)
∑
n

=
∑
n−

∑
n1

∑
n2

. (126)

With this notation (124) has the form

φ(x̃, x+) :=
∑
n

φn(x+)ξn(x̃), (127)

which gives a discrete representation of the field as a linear combination of discrete operators with different resolutions
on the light front.

Each discrete field operator, φn(0), is associated with a degree of freedom that is localized in a given volume on the
light-front hyperplane. In addition, there are an infinite number of these degrees of freedom that are localized in any
open set on the light front.

While the fields are operator valued distributions, that does not preclude the existence of operators constructed
by smearing with functions that have only one derivative. Note that the support condition implies that the Fourier
transform of the basis functions are entire.

VII. KINEMATIC POINCARÉ TRANSFORMATIONS OF FIELDS IN THE WAVELET
REPRESENTATION

Since this representation is formally exact, kinematic Poincaré transformations on the algebra of fields restricted to
the light-front can be computed by acting on the basis functions. This follows from the kinematic covariance of the
field

U(Λ, a)φ(x̃, x+ = 0)U†(Λ, a) = φ((Λ̃ΛΛx̃ + ã), x+ = 0) (128)

for (Λ, a) in the light-front kinematic subgroup. Using the discrete representation of the field on both sides of this
equation gives the identity

U(Λ, a)
∑
n

φn(x+ = 0)ξn(x̃)U†(Λ, a) =
∑
n

φn(x+ = 0)ξn(Λ̃ΛΛx̃ + ã). (129)

This shows that kinematic transformations can be computed exactly by transforming the arguments of the expansion
functions.

The transformation property of the discrete field operators restricted to a light front follows from the orthonormality
of the basis functions (129):

U(Λ, a)φn(x+ = 0)U†(Λ, a) =
∑
m

φm(x+ = 0)Umn(Λ̃ΛΛ, ã) (130)

where the matrix

Umn(Λ̃ΛΛ, ã) :=

∫
d2x⊥dx

−ξm(Λ̃ΛΛx̃ + ã)ξn(x̃) (131)

is a discrete representation of the light front kinematic subgroup.
This identity implies that in the wavelet representation kinematic Lorentz transformations on the fields can be

computed either by transforming the arguments of the basis functions or by transforming the discrete field operators.

VIII. STATES IN THE WAVELET REPRESENTATION

Because the algebra of free fields restricted to the light front is irreducible and kinematically invariant interactions
leave the Fock vacuum unchanged, the Hilbert space for the dynamical model can be generated by applying functions
of the discrete field operators, φn(x+ = 0), to the Fock vacuum.
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Smeared light-front fields can be represented in the discrete representation as linear combinations of the discrete
field operators

φ(f, x+ = 0) :=
∑
n

∫
d2x⊥dx

−f(x̃)ξn(x̃)φn(x+ = 0). (132)

Equation (132) can be expressed as

φ(f, x+ = 0) =
∑
n

fnφn(x+ = 0) (133)

where

fn :=

∫
d2x⊥dx

−f(x̃)ξn(x̃). (134)

States can be expressed as polynomials in the smeared fields applied to the light-front Fock vacuum∑
cm1···mn

φ(fm1
, 0) · · ·φ(fmn

, 0)|0〉. (135)

This representation can be re-expressed as a linear combination of products of discrete fields applied to the Fock
vacuum ∑

cm1···mn
φm1

(0) · · ·φmn
(0)|0〉. (136)

The inner product of two vectors of this form is a linear combination of n-point functions. For the free field algebra,
the n-point functions are products of two-point functions. The two-point functions have the form

〈0|φ(f, 0)φ(g, 0)|0〉 =

∫
θ(p+)dp+d2p⊥

2p+
f̃(−p̃)g̃(p̃). (137)

This integral is logarithmically divergent if the Fourier transforms of the smearing functions do not vanish at p+ = 0.
Since p+ = 0 corresponds to infinite 3-momentum, this requirement is that the smearing functions need to vanish for
infinite 3-momentum.

From (133) and (137) it follows that the inner product above is a linear combination of two-point functions in the
discrete fields, φn(x+ = 0).

The basis functions ξm(x) have compact support which implies that their Fourier transforms are entire functions of
the light-front momenta p̃. This means that they cannot vanish in a neighborhood of p+ = 0, however they can have
isolated zeroes at p+ = 0. For the wavelet basis functions, wlm(x), the vanishing (119) of the first three moments of
the L = 3 wavelets implies that

w̃lm(p+)p+=0 =
1

2π1/2

∫
wlm(x−)dx− = 0

d

dp+
w̃lm(p+)p+=0 = − 1

2π1/2

∫
x−wlm(x−)dx− = 0 (138)

d2

d2p+
w̃lm(p+)p+=0 = − 1

2π1/2

∫
(x−)2wlm(x−)dx− = 0. (139)

Since the Fourier transforms are entire this means that they have the form w̃lm(p+) = (p+)3f lm(p+) where f lm(p+) is
entire. For the scaling function basis functions, skm(x), the normalization condition (111) gives

s̃km(p+)p+=0 =
1

2π1/2

∫
skm(x−)dx− =

1

2π1/2
2−k/2 6= 0. (140)

These results imply that

〈0|φm(x+ = 0)φn(x+ = 0)|0〉 (141)

is singular if both basis functions have scaling functions in the x− variable, but are finite if at least one of the basis
functions has a wavelet in the x− variable.

Since the smearing functions, f(p̃), should all vanish at p+ = 0, the discrete representation will involve linear
combinations of wavelets and scaling functions whose Fourier transforms all vanish at p+ = 0. In computing these
quantities the linear combinations of scaling functions should be summed before performing the integrals. This can
alternatively be done by including a cutoff near p+ = 0, doing the integrals, adding the contributions and then letting
the cutoff go to zero.
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IX. DYNAMICS

The dynamical problem involves diagonalizing P− on the free field Fock space or solving the light-front Schrödinger
(28) or Heisenberg equations (29). The two dynamical equations can be put in integral form

Ψ(x+)|0〉 = Ψ(x+ = 0)|0〉 − i

2

∫ x+

0

[P−,Ψ(x+′)]|0〉dx+′ (142)

or

O(x+) = O(x+ = 0) +
i

2

∫ x+

0

dx+′[P−, O(x+′)] (143)

where Ψ(x+ = 0) and O(x+ = 0) are operators in the light-front Fock algebra.
The formal iterative solution of these equations has the structure of a linear combination of products of discrete

fields, φn(0), in the light front Fock algebra with x+-dependent coefficients. What is needed to perform this iteration
are the initial operators Ψ(x+ = 0) and O(x+ = 0) expressed as polynomials in the φn(0), the expression for P− as
a polynomial in the φn(0), and an expression for the commutator, [φm(0), φn(0)], of the discrete fields on the light
front.

X. THE COMMUTATOR

It follows from (55) that the commutator of the discrete fields is

[φm(0), φn(0)] = − i
4
δm1n1δm2n2

∫
ξm−(x−)ε(x− − y−)ξn−(y−)dx−dy−. (144)

Unlike the inner product, the commutator is always finite since both ξm−(x−) and ξn−(y−) have compact support.
The commutator (144) can be computed exactly using the renormalization group equations. The computation

involves three steps. The first step is to express ξm−(x−) and ξn−(y−) as linear combinations of scaling functions on
a sufficiently fine common scale. The second step is to change variables so the commutator is expressed as a linear
combination of commutators involving integer translates of the fixed-point solution s(x−) of the renormalization group
equation. The last step is to use the renormalization group equation to construct a finite linear system relating the
commutators involving integer translates of the s(x−).

Applying DkTn to the renormalization group equation and the expression for w(x) gives

DkTns(x) =

l∑
L=0

hlD
k+1T 2n+ls(x). (145)

and

DkTnw(x) =

l∑
L=0

glD
k+1T 2n+ls(x). (146)

These equations express skn(x) and wkn(x) as linear combinations of the sk+1
n (x) :

skn(x) =

2L−1∑
l=0

hls
k+1
2n+l(x) =

2n+2L−1∑
m=2n

hm−2ns
k+1
m (x) =

2n+2L−1∑
m=2n

Hn;ms
k+1
m (x) where Hn;m := hm−2n (147)

and

wkn(x) =

2L−1∑
l=0

gls
k+1
2n+l(x) =

2n+2L−1∑
m=2n

gm−2ns
k+1
m (x) =

2n+2L−1∑
m=2n

Gn;ms
k+1
m (x) where Gn;m := gm−2n. (148)

While the matrices Hn;m and Gn;m are formally infinite, for each fixed n these are 0 unless 2n ≤ m ≤ 2L− 1 + 2n.
Using powers of the matrices

Hm
nl :=

∑
Hnk1Hk1k2 · · ·Hkml (149)
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and Gnl the basis function can be represented as finite linear combinations of finer resolution scaling functions

skn =
∑
l

Hm
nls

k+m
l (150)

wkn =
∑
lt

Hm−1
nt Gtls

k+m
l (151)

where the sums in (150) and (151) are finite. Using these identities all of the integrals can be reduced to finite linear
combinations of integrals involving a pair of scaling functions, skn(x) = 2k/2s(2kx− n), on a common fine scale, 2−k.

What remains is linear combinations of products of integrals of the form∫
skm(x)ε(x− − y−)skn(y−)dx−dy− =

∫
2k/2s(2kx− −m)ε(x− − y−)2k/2s(2ky− − n)dx−dy−. (152)

Changing variables

y−′ = 2ky− − n, x−′ = 2kx− − n (153)

noting

ε(x− − y−) = ε(2kx− − 2ky−) (154)

this becomes ∫
2−ks(x′− −m)ε(x′− − y′−)s(y′− − n)dx′−dy′− = (155)

∫
2−ks(x′− + n−m)ε(x′− − y′−)s(y′−)dx′−dy′− = 2−kI[n−m] (156)

where

I[n] :=

∫
s(x− + n)ε(x− − y−)s(y−)dx−dy−. (157)

I[n] can be expressed as a difference of two integrals

I[n] =

∫
s(x− + n)[

∫ x−

−∞
s(y−)−

∫ ∞
x−

s(y−)]dx−dy− (158)

while the normalization condition (107) gives∫
s(x− + n)[

∫ x−

−∞
s(y−) +

∫ ∞
x−

s(y−)]dx−dy− = 1. (159)

Adding (158) and (159) gives:

I[n] = 2

∫
s(x− + n)

∫ x−

−∞
s(y−)dx−dy− − 1. (160)

If the support of s(x− + n) is to the right of the support of s(y−), the integral is 1 while if the support of s(x− + n)
is to the left of the support of s(y−) the integral is −1. Thus for the L = 3 basis functions

I[n] =


1 n ≤= −5

I[n] −4 ≤ n ≤ 4

−1 n ≥ 5

. (161)
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The I[n] for n ∈ [−4, 4] are related by the renormalization group equations

I[n] =

∫
s(x− + n)ε(x− − y−)s(y−)dx−dy− = (162)

2
∑

hlhk

∫
s(2x− + 2n− l)ε(x− − y−)s(2y− − k)dx−dy− = (163)

1

2

∑
hlhk

∫
s(2x− + 2n− l)ε(2x− − 2y−)s(2y− − k)2dx−2dy− = (164)

1

2

∑
hlhk

∫
s(x− + 2n− l)ε(x− − y−)s(y− − k)dx−dy− = (165)

1

2

∑
hlhk

∫
s(x− + 2n− l + k)ε(x− − y−)s(y−)dx−dy− = (166)

1

2

∑
hlhkI[2n+ k − l] =

1

2

∑
hm+l−2nhlI[m] =

1

4

∑
am−2nI[m] (167)

where

an := 2

5∑
l=0

hlhl+n − 5 ≤ n ≤ 5. (168)

The numbers an will appear again. The an are rational numbers [56][57][58][59]. For L=3 the non-zero an are

a0 = 2 a1 = a−1 =
75

64
a3 = a−3 = − 25

128
a5 = a−5 =

3

128
. (169)

The 9×9 matrix Amn := an−2m (−4 ≤ m,n ≤ 4) has the following rational eigenvalues λ = 2, 1, 12 ,
1
4 ,±

1
8 ,

1
16 ,

9
32 ,−

9
64 ,

so it is invertible.
The non-trivial I[n] are solutions of the linear system

4∑
n=−4

AmnI[n] = dm (170)

where

dm = a5−2m − a−5−2m. (171)

The solution of (170) is

I[n] =



−3.34201389e+ 00, n = −4

8.33333333e+ 00, n = −3

−1.79796007e+ 01, n = −2

1.94444444e+ 01, n = −1

0.00000000e− 00, n = 0

−1.94444444e+ 01, n = 1

1.79796007e+ 01, n = 2

−8.33333333e+ 00, n = 3

3.34201389e+ 00, n = 4


. (172)

While (172) is a numerical solution, the exact solution is rational since both Amn and dn are rational.
This solution, along with (161), can be used to construct the commutator of any of the discrete field operators

using (145-155).
The general structure of the commutators is

[φm(0), φn(0)] = Cm,n = (scale factors)× (powers of H,G)× I[n] (173)

Note that while this commutator looks very non-local, if the scaling functions in (144) are replaced by wavelets
with supports that are sufficiently separated, the integrals vanish because the moments of wavelets vanish. This will
also be true of linear combinations of scaling functions that represent functions that vanish at p+ = 0.
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XI. POINCARÉ GENERATORS

The other quantity needed to formulate the dynamics is an expression for P− or one of the other dynamical
Poincaré generators expressed in terms of operators in the irreducible algebra. Since the generators are conserved
Noether charges, they are independent of x+, so the generators can be expressed in terms of fields on the light front.
The discrete representations of the generators can be constructed by replacing the fields on the light front by the
discrete representation (124,127) of the fields. The integrals over the light front become integrals over products of
basis functions and their derivatives. This section discusses the computation of these integrals using renormalization
group methods.

A scalar φ4(x) theory is used for the purpose of illustration. In this case the problem is to express all of the
generators as linear combinations of products of discrete fields.

The construction of the Poincaré generators from Noether’s theorem was given in section IV. Using the discrete
representation of fields the light-front Poincaré generators (84-90) have the following forms

P+ =
∑
mn

: φm(0)φn(0) : P+
m,n (174)

where

P+
m,n := 2

∫
dx−d2x⊥∂−ξm(x̃)∂−ξn(x̃)), (175)

P i =
∑
mn

: φm(0)φn(0) : P im,n (176)

where

P im,n := −
∫
dx−d2x⊥∂−ξn(x̃)∂iξm(x̃), (177)

P− =
∑
mn

: φm(0)φn(0) : P−m,n +
∑

n1n2n4n4

: φn1
(0)φn2

(0)φn3
(0)φn4

(0) : P−n1,n2,n3,n4
(178)

where

P−m,n :=

∫
dx−d2x⊥

(
1

2
∇∇∇⊥ξm(x̃) · ∇∇∇⊥ξn(x̃) +

1

2
m2ξm(x̃)ξn(x̃)

)
(179)

and

P−n1,n2,n3,n4
:= λ

∫
dx−d2x⊥ξn1

(x̃)ξn2
(x̃)ξn3

(x̃)ξn4
(x̃), (180)

K3 =
∑
mn

: φm(0)φn(0) : K3
m,n +

∑
n1n2n4n4

: φn1
(0)φn2

(0)φn3
(0)φn4

(0) : K3
n1,n2,n3,n4

(181)

where

K3
m,n :=

∫
dx−d2

(
2x⊥x

−∂−ξm(x̃)∂−ξn(x̃)− 1

2
x+∇∇∇⊥ξm(x̃) · ∇∇∇⊥ξn(x̃)− 1

2
m2x+ξm(x̃)ξn(x̃)

)
(182)

and

K3
n1,n2,n3,n4

:= −λ
∫
dx−d2x⊥x

+ξn1
(x̃)ξn2

(x̃)ξn3
(x̃)ξn4

(x̃). (183)

Setting x+ = 0 this becomes

K3
m,n → 2

∫
dx−d2x⊥x

−∂−ξm(x̃)∂−ξn(x̃); K3
n1,n2,n3,n4

→ 0. (184)
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For the remaining generators

E1 =
∑
mn

: φm(0)φn(0) : E1
m,n (185)

where

E1
m,n :=

∫
dx−d2x⊥

(
2x1∂−ξm(x̃)∂−ξn(x̃) + ∂−ξm(x̃)∂1ξn(x̃)x+

)
→ 2

∫
x1∂−ξm(x̃)∂−ξn(x̃), (186)

E2 =
∑
mn

: φm(0)φn(0) : E2
m,n (187)

where

E2
m,n :=

∫
dx−d2x⊥(2x2∂−ξm(x̃)∂−ξn(x̃) + ∂−ξm(x̃)∂2ξn(x̃)x+)→ 2

∫
dx−d2x⊥x

2∂−ξm(x̃)∂−ξn(x̃), (188)

F 1 =
∑
mn

: φm(0)φn(0) : F 1
m,n +

∑
n1n2n3n4

: φn1
(0)φn2

(0)φn3
(0)φn4

(0) : F 1
n1,n2,n3,n4

(189)

where

F 1
m,n :=

∫
dx−d2x⊥

(
1

2
x1∇∇∇⊥ξk(x) · ∇∇∇⊥ξl(x) +

1

2
x1m2ξk(x̃)ξl(x̃) + x−∂−ξk(x̃)∂1ξl(x̃)

)
(190)

and

F 1
n1,n2,n3,n4

:= λ

∫
dx−d2x⊥x

1ξn1(x̃)ξn2(x̃)ξn3(x̃)ξn4(x̃), (191)

F 2 =
∑
mn

: φm(0)φn(0) : F 2
m,n +

∑
n1n2n4n4

: φn1(0)φn2(0)φn3(0)φn4(0) : F 2
n1,n2,n3,n4

(192)

where

F 2
m,n :=

∫
dx−d2x⊥

(
1

2
x2∇∇∇⊥ξk(x) · ∇∇∇⊥ξl(x) +

1

2
x2m2ξk(x̃)ξl(x̃) + x−∂−ξk(x̃)∂2ξl(x̃)

)
(193)

and

F 2
n1,n2,n3,n4

:= λ

∫
dx−d2x⊥x

2ξn1
(x̃)ξn2

(x̃)ξn3
(x̃)ξn4

(x̃). (194)

All of these operators have the structure of linear combinations of normal products of discrete fields evaluated at
x+ = 0 times constant coefficients, P+

n1,n2
, P in1,n2

, P−n1,n2
, P−n1,n2,n3,n4

,K3
n1,n2

, J3
n1,n2

, Ein1,n2
, F in1,n2

, F in1,n2,n3,n4
, which

are integrals involving products of basis functions and their derivatives. The three-dimensional integrals that need
to be evaluated to compute these coefficients are products of three one-dimensional integrals that have one of the
following eight forms: ∫

dxξm(x)ξn(x)

∫
dx∂xξm(x)ξn(x)

∫
dx∂xξm(x)∂xξn(x) (195)

∫
dxxξm(x)ξn(x)

∫
dxx∂xξm(x)ξn(x)

∫
dxx∂xξm(x)∂xξn(x). (196)

∫
dxξn1

(x)ξn2
(x)ξn3

(x)ξn4
(x)

∫
dxxξn1

(x)ξn2
(x)ξn3

(x)ξn4
(x). (197)
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In what follows it is shown how all of these integrals can be computed using the renormalization group equation (104).
The integrals (195-197) are products of basis functions which may be scaling functions with scale 2−k or wavelets of

scale 2−k−l for l ≥ 0. The same methods that were used in the computation of the commutator function, (145-151),
can be used to express the integrals (195-197) as linear combinations of integrals involving scaling functions on a
common scale fine scale, 2−l.

After expressing the integrals in terms of scaling functions, sln(x), and their derivatives, the one-dimensional integrals
(195-197) can be expressed in terms of integrals involving products of the sn(x). A variable change, x → x′ = 2−lx
can be used to express all of the integrals in terms of translates of the original fixed point s(x). The scale factors for
each type of integral are shown below: ∫

dxslm(x)sln(x) = δmn (198)

∫
dx∂xs

l
m(x)sln(x) = 2l

∫
dxs′(x)sn−m(x) (199)

∫
dx∂xs

l
m(x)∂xs

l
n(x) = 22l

∫
dxs′(x)s′n−m(x) (200)

∫
dxsln1

(x)sln2
(x)sln3

(x)sln4
(x) = 2l

∫
dxs(x)sn2−n1

(x)sn3−n1
(x)sn4−n1

(x) (201)

∫
dxxslm(x)sln(x) = 2−l(

∫
dxxs(x)sn−m(x) +mδm,n) (202)

∫
dxx∂xs

l
m(x)sln(x) =

∫
dx(x+m)s′(x)sn−m(x) (203)

∫
dxx∂xs

l
m(x)∂xs

l
n(x) = 2l

∫
dx(x+m)s′(x)s′n−m(x) (204)

∫
dxxsln1

(x)sln2
(x)sln3

(x)sln4
(x) =

∫
dx(x+ n1)s(x)sn2−n1

(x)sn3−n1
(x)sn4−n1

(x). (205)

These identities express all of the integrals involving scale 2−l scaling functions in terms of related integrals involving
the sn(x). The compact support of the functions sn(x) means the these integrals are identically zero unless the indices
and the absolute values of their differences are less than 2L− 2 which is 4 for L = 3.

The integrals of the right side of (199-205), are the following integrals:

δmn =

∫
dxsm(x)sn(x) m = n (206)

D1[m] :=

∫
dx
ds

dx
(x)sm(x) − 4 ≤ m ≤ 4 (207)

D2[m] :=

∫
dx
ds

dx
(x)

dsm
dx

(x) − 4 ≤ m ≤ 4 (208)

Γ4[m][n][k] :=

∫
dxs(x)sm(x)sn(x)sk(x) − 4 ≤ m,n, k,m− n,m− k, k − n ≤ 4 (209)
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X[m] :=

∫
dxxs(x)sm(x) − 4 ≤ m ≤ 4 (210)

X1[m] :=

∫
dxx

ds

dx
(x)sm(x) − 4 ≤ m ≤ 4 (211)

X2[m] :=

∫
dxx

ds

dx
(x)

dsm
dx

(x) − 4 ≤ m ≤ 4 (212)

Γ4x[m][n][k] :=

∫
dxxs(x)sm(x)sn(x)sk(x) − 4 ≤ m,n, k,m− n,m− k, k − n ≤ 4. (213)

The renormalization group equation in the form

s(x− n) =

5∑
l=0

hl
√

2s(2x− 2n− l) (214)

and a variable change x→ x′ = 2x leads to the following linear equations relating the non-zero values of these integrals

D1[n] =

4∑
m=−4

am−2nD1[m] =

4∑
m=−4

AnmD1[m] (215)

D2[n] = 2

4∑
m=−4

am−2nD2[m] = 2

4∑
m=−4

AnmD2[m] (216)

where am

am := 2

5∑
k=0

hk+mhk − 5 ≤ m ≤ 5 (217)

is the same quantity (168-169) that appeared in the computation of the commutator function. A similar quantity
appears in the homogeneous equations relating the non-zero Γ4[m][n][k]’s:

Γ4[m][n][k] :=

5∑
l,lmln,lk=0

2hlhlmhlnhlkΓ4[2m+ lm − l][2n+ ln − l][2k + lk − l] =

∑
m′m′k′

A4(m,n, k;m′, n′, k′)Γ4[m′][n′][k′] (218)

where

A4(m,n, k;m′, n′, k′) :=
∑
l

2hlhm′−2m+lhn′−2n+lhk′−2k+l. (219)

The relations involving X[n], X1[n], X2[n] and Γ4x[m][n][k] have inhomogeneous parts

X[n] =
1

4

4∑
m=−4

AnmX[m] +
1

2

∑
l

lhlhl−2n (220)

X1[n] =
1

2

4∑
m=−4

AnmX1[m] +
∑
l

lhlhl−2n+mD1[m] (221)



23

X2[n] =

4∑
m=−4

AnmX2[m] + 2
∑
l

lhlhl−2n+mD2[m] (222)

Γ4x[m][n][k] :=
1

2

∑
m′n′k′

A4(m,n, k;m′, n′, k′)Γ4x[m′][n′][k′]− (223)

∑
m′n′k′

(
∑
l

hlhm′−2m+lhn′−2n+lhk′−2k+ll)Γ4[m′][n′][k′]. (224)

Since the 9× 9 matrix Amn := an−2m (−4 ≤ m,n ≤ 4) has eigenvalues λ = 2, 1, 12 ,
1
4 ,±

1
8 ,

1
16 ,

9
32 ,−

9
64 , it follows that

D1[n] and D2[n] are eigenvectors of Amn with eigenvalues 1 and 1
2 respectively. The normalization is determined by

the equations discussed below. Equation (218) similarly implies that Γ4[m][n][k] is an eigenvector with eigenvalue 1
of the matrix A4 defined by the right-hand side of (218). The normalization of Γ4[m][n][k] is also discussed below.

The matrix (I− 1
4A) in (220) is invertible so (220) is a well-posed linear system for X[n], while the matrices (I− 1

2A)
and (I−A) in (221) and (222) are singular. To solve them the Moore-Penrose generalized inverse [60] is applied to the
inhomogeneous terms to get specific solutions. These solutions are substituted back in the equations to ensure that
the inhomogeneous terms are in the range of (I− 1

2A) and (I−A) respectively, although this must be the case since the
solutions can also be expressed as integrals. The general solutions of (221) and (222) can include arbitrary amounts
of the solution of the homogeneous equations which are eigenstates of Amn with eigenvalues 2 and 1 respectively. The
contribution from the homogeneous equation is determined by the normalization conditions below.

The normalization conditions are derived from the property that polynomials with degree less than L can be
point-wise represented as locally finite-linear combination of the sn(x). These expansions have the form

1 =
∑

sn(x) (225)

x =
∑

(〈x〉+ n)sn(x) = 〈x〉+
∑

nsn(x) (226)

x2 =
∑

(〈x〉+ n)2sn(x) = 〈x〉2 + 2〈x〉
∑

nsn(x) +
∑

n2sn(x). (227)

where

〈xn〉 :=

∫
s(x)xndx (228)

are moments of s(x). Differentiating (226) and (227) gives

1 =
∑

ns′n(x) (229)

x = 〈x〉+
1

2

∑
n2s′n(x). (230)

Multiplying (229) by s(x) and integrating the result gives

4∑
n=−4

nD1[n] = −1. (231)

Multiplying (230) by s′(x) and integrating gives

4∑
n=−4

n2D2[n] = −2. (232)
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These conditions determine the normalization of the eigenvectors D1[n] and D2[n]. Note that the moments do not
appear in these normalization conditions, although all moments of s(x) can be computed recursively using renor-
malization group equation and the normalization condition (107). Using (229) in (211) and integrating by parts
gives:

4∑
n=−4

X1[n] = −1. (233)

Using (230) in (212) and integrating by parts gives:

4∑
n=−4

nX2[n] = −1. (234)

These conditions determine the contribution of the solution of the homogeneous equations in the general solution.
The normalization conditions for Γ4[m][n][k] are obtained using the partition of unity property (225)

4∑
m=−4

Γ4[m][n][k] = Γ3[n][k];

4∑
n=−4

Γ3[n][k] = δk0 (235)

4∑
m=−4

Γ4x[m][n][k] = Γ3x[n][k];

4∑
n=−4

Γ3[n][k] = X[k] (236)

where

Γ3[m][n] :=

∫
dxxs(x)sm(x)sn(x) − 2L+ 2 ≤ m,n,m− n ≤ 2L− 2 (237)

Γ3x[m][n] :=

∫
dxxs(x)sm(x)sn(x) − 2L+ 2 ≤ m,n,m− n ≤ 2L− 2 (238)

and Γ3[m][n] is a solution of the eigenvalue problem

Γ3[m][n] =
∑
m′n′

a3(m,n;m′n′)Γ3[m′][n′] (239)

with normalization (235) and

a3(m,n;m′n′) =
∑
l

hlhm′−2m+lhn′−2n+l. (240)

Γ3x[m][n] satisfies

Γ3x[m][n] :=
∑
m′n′

a3(m,n;m′n′)Γ3x[m′][n′]− (241)

∑
m′n′

(

2L−1∑
l

lhlhm′−2m+lhn′−2n+l)Γ3[m′][n′] (242)

with the normalization constraint ∑
n

Γ3x[m][n] = X[m]. (243)

These finite linear systems can be solved for all of the integrals (195-197). The results for
D1[n], D2[n], X[n], X1[n], X2[n] for L = 3, which are needed to compute the constant coefficients for the free field gen-
erators are given below. The vector Γ4[m][n][k] of coefficients for the dynamical generators has too many components
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to display. They can be computed by finding the eigenvector with eigenvalue 1 of the 93 × 93 matrix a4[m][n][m′][n′]
with normalization given by (235). The normalization condition requires solving for the eigenvector with eigenvalues
1 of the 92 × 92 matrix a3[m][n][m′][n′] using the normalization condition (235). Finally Γ4x[m][n][k] be computed
by applying the Moore Penrose generalized inverse of (I − a4) to the inhomogeneous term in (223) and adding an
amount of the solution of the eigenvalue problem (2I − a4)X = 0 consistent with the normalization condition (236)

All the these quantities can alternatively computed by a direct quadrature, however the fractal nature of the basis
functions makes the renormalization group method discussed above preferable. The values of D1[n], D2[n], X[n], X1[n]
and X2[n] are given below: 

D1[−4] = 1
2920

D1[−3] = − 16
1095

D1[−2] = − 53
365

D1[−1] = 272
365

D1[0] = 0.0

D1[1] = − 272
365

D1[2] = 53
365

D1[3] = − 16
1095

D1[4] = − 1
2920





D2[−4] = − 3
560

D2[−3] = − 4
35

D2[−2] = 92
105

D2[−1] = − 356
105

D2[0] = 295
56

D2[1] = − 356
105

D2[2] = 92
105

D2[3] = − 4
35

D2[4] = − 3
560


(244)



X0[−4] = −3.96222254e− 06

X0[−3] = −6.76219313e− 04

X0[−2] = 1.92128831e− 02

X0[−1] = −1.21043257e− 01

X0[0] = 1.02242228e+ 00

X0[1] = −1.21043257e− 01

X0[2] = 1.92128831e− 02

X0[3] = −6.76219313e− 04

X0[4] = −3.96222254e− 06





X1[−4] = 1.75026831e− 06

X1[−3] = −6.81293512e− 04

X1[−2] = −3.98947081e− 02

X1[−1] = 3.39841948e− 01

X1[0] = −5.00000000e− 01

X1[1] = −1.08504743e+ 00

X1[2] = 3.30305667e− 01

X1[3] = −4.31543229e− 02

X1[4] = −1.37161328e− 03





X2[−4] = −5.08087952e− 04

X2[−3] = −8.68468406e− 03

X2[−2] = 5.47476157e− 01

X2[−1] = −3.01673853e+ 00

X2[0] = 6.95730703e+ 00

X2[1] = −6.40481025e+ 00

X2[2] = 2.29938859e+ 00

X2[3] = −3.51494681e− 01

X2[4] = −2.19355544e− 02


(245)

XII. TRUNCATIONS

The value of the wavelet representation is that, while it is formally exact, it also admits natural volume and
resolution truncations in the light-front hyperplane. Truncations define effective theories that are expected to be good
approximations to the theory for reactions associated with a volume and energy scale corresponding to the volume
and resolution of the truncations. The simplest truncation discards degrees of freedom smaller than some limiting
fine resolution, 2−l as well as degrees of freedom with support outside of some volume on the light front.

In this regard it has similar properties to a lattice truncation. Unlike a lattice truncation, because the theory is
formally exact it is straightforward to systematically include corrections associated with finer resolution or larger
volumes. Some other appealing features are that the truncated fields have a continuous space-time dependence and
can be differentiated, so there is no need to use finite difference approximations. Finally it is possible to take advantage
of some of the advantages of the light-front quantization.

One problem that is common to lattice truncations of field theory is that truncations break symmetries. In the
light-front case truncations break the kinematic covariance. One consequence is that transforming the truncated field
covariantly using (128) is not the same as transforming the truncated field using the matrix (130) and truncating the
result. The difference between these two calculations is due to the discarded degrees of freedom, which should be
small for a suitable truncation. This suggests that kinematic Lorentz transformations can be approximated by using
(128) with the truncated fields. The vacuum of the formally exact theory is the trivial Fock vacuum if the interaction
commutes with the kinematic subgroup. When the kinematic invariance is broken the lowest mass eigenstate of the
truncated P− is not necessarily the Fock vacuum, however the Fock vacuum states should become the lowest mass
state in the infinite-volume, zero-resolution limit. This suggests that using trivial Fock vacuum might still be a good
approximation.

The basis discussed in this work is not the only possible basis choice and may not be the best option for treating
the transverse degrees of freedom for fields in 3 + 1 dimensions. In this work the transverse degrees of freedom are
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expanded in products of multi-scale basis functions of Cartesian coordinates, x and y. Truncations of this basis break
the rotational symmetry about the z axis. An alternative is to expand the transverse degrees of freedom in a basis
consisting of products of functions of the polar coordinates r and θ where x = r cos(θ) and y = r sin(θ). The basis
functions in the θ variable can be taken as the periodic functions, 1√

2π
einθ. This choice maintains the rotational

symmetry, but does not give a multi-resolution treatment of the angle degree of freedom. A second option is to
use the multi-resolution basis in the angle variable on [0, 2π] with periodic boundary conditions. In this case the
truncations will result in a discrete rotational symmetry that depends on the resolution. In both cases the radial
degree of freedom can be expanded in a multi-resolution basis. The only difference is that the radial functions have
support on [0,∞] rather than [−∞,∞]. This requires replacing the basis functions that have support at r = 0 by
linear combinations of these functions that satisfy the boundary conditions at the origin. The linear combinations in
a subspace of a given resolution can be constructed so they are orthonormal on [0,∞], resulting in an orthonormal
basis on that subspace, however the modified basis functions near the origin in subspaces of different resolution are
no longer orthogonal. This results in additional coupling of degrees of freedom on different scales near r = 0. This is
because the exact boundary conditions at r = 0 involve functions of all resolutions.

XIII. SUMMARY AND OUTLOOK

This work introduced a multi-resolution representation of quantum field theory on a light front. This is a formally
exact representation of the field theory in terms of an infinite number of discrete degrees of freedom that are localized
on the light front. Each degree of freedom is associated with a compact subset of the light front. These subsets cover
the light front and there are an infinite number of them in every open subset on the light front. This representation
has the property that there are a finite number of these degrees of freedom associated with any finite volume and any
given maximal resolution on the light front.

Each degree of freedom or mode is represented by a field on the light front integrated over a basis function of
compact support on the light front. The discrete fields associated with a free-field theory are an irreducible set of
operators on the free field Fock space. For interacting theories with self-adjoint kinematically invariant interactions
the spectral condition on P+ implies that the interaction cannot change the Fock vacuum. This means dynamical
operators like the Poincaré generators can be expressed as functions of this irreducible algebra of fields acting on the
free field Fock space.

The Poincaré generators involve ill-defined products of fields at the same point, so the formal interactions are not
well-defined self-adjoint operators on the Fock space. In the multi-resolution representation the ultraviolet singularities
that arise from local operator products necessarily appear as non-convergence of infinite sums of well-defined operator
products. There are also infrared divergences that appear in products of scaling function modes even after the
smearing. In the light-front case the ultraviolet and infrared singularities are constrained by rotational covariance, so
any strategy to non-perturbatively renormalize the theory must treat these problems together.

Computations necessarily involve both volume and resolution cutoffs, which result in a well-defined truncated theory
with a finite number of degrees of freedom. As long as the interaction in the truncated theory vanishes at p+ = 0, the

interaction will leave the Fock vacuum unchanged. The variable p+ = ẑ · p +
√
m2 + p2 approaches zero in the limit

that −ẑ · p→ +∞, so it is an infinite momentum limit, which involves high-resolution degrees of freedom. Requiring
that the interaction vanish at p+ = 0 is a resolution cutoff. This can be realized by discarding products of scaling
function modes in the interaction. These modes do not contribute to the operator product when it is integrated over
functions with vanishing Fourier transforms at p+ = 0.

Dynamical calculations evolve the fields to points off of the light front. This evolution can be performed by
iterating the light-front Heisenberg field equations or by solving the light-front Schrodinger equation. Both cases
involve discrete mathematics. Iterating the Heisenberg field equations results in a representation of the field as an
expansion in normal products of discrete fields on the light front with x+-dependent coefficients. Because fields on the
light front are irreducible, the different discrete field operators cannot all commute, however the commutator can be
calculated explicitly and analytically. Vacuum expectation values of product of fields can be computed by evaluating
the solution of the Heisenberg equations in the Fock vacuum.

There are a number of problems involving free fields that can be used to try to understand the convergence
of computational strategies in truncated theories. Free field theories have the advantage that they can be solved
exactly, so errors can be calculated by comparing exact computations to computations based on truncated theories.
Among the problems of interest is how is Poincaré invariance recovered as the resolution is increased in a truncated
theory. Because the basis is local, this can be tested in a finite volume. Methods for performing this test in the
corresponding wavelet representation of canonical field theory were discussed in [25]. These methods utilize the
locally finite partition of unity property of the scaling functions in the expression for the generators in terms of
the integrals over the energy-momentum and angular-momentum tensor densities. In the light-front case free fields
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provide a laboratory to investigate the accuracy of kinematic Lorentz transformations in truncated theories. Another
important problem is how efficiently can the multi-resolution representation of the light front Hamiltonian be block
diagonalized by resolution. This was studied for the case of the corresponding wavelet representation of canonical field
theory in [35]. One conclusion of that work is that both volume and resolution need to be increased simultaneously in
order to converge to a sensible energy spectrum of the Hamiltonian (i.e so it approaches a continuous spectrum that is
unbounded above). In addition, it was found that convergence to a block diagonal form slowed as energy separation of
the modes decreased. Another calculation that should be done is to compare the Wightman functions or commutator
functions of the truncated theories to the exact quantities. The light front representation has the advantage that
these can be computed without without solving for an approximate vacuum. Another interesting question is what is
the contribution of the product of the infrared singular parts of the truncated fields to normal ordered products of
free fields. Does the normal ordering remove these contributions?

The next class of problems of interest are 1+1 dimensional solvable field theories. These are interesting because
the dynamical equations in the multi-resolution representation generates more complicated operators in the algebra
of fields on the light front. Reference [15] used Daubechies’ wavelets methods in a canonical representation of the field
theory to treat the X-Y model and spontaneous symmetry breaking in the Landau Ginzburg model.

The real interest is to apply multi-resolution methods to realistic theories in 3+1 dimensions. These are computa-
tionally far more complex than problems involving free fields or problem in low dimensions. There are several kinds
of problems of interest. These include bound state problems, scattering problems, studies of correlation functions and
extensions to gauge theories. While the discrete nature of the multi-resolution representation has some computational
advantages, they will not be of significant help for these complex problems, especially since the number of modes scale
with dimension and number of particles. One of the advantages of multi-resolution methods is that basis functions
are self similar. The result is that the coupling strength of the various modes differs by different powers of 2. A
systematic investigation could help to identify the most dominant modes in a given application. This could be used to
get a rough first approximation and can be improved perturbatively. One interesting property of the multi-resolution
representation of the theory is that it is both discrete and formally exact. In a formally exact theory Haag-Ruelle
scattering theory can be used to express scattering observables as strong limits. Of interest is to use the exact repre-
sentation to develop an approximation algorithm for computing scattering observables in this discrete representation.
This is not trivial, since the time limits will not converge if they are computed after truncation.

Bound state calculations could be computed by diagonalizing the mass operator on a subspace, similar to how this
is done using basis light front quantization [47]. Variational methods could prove useful in this regard.

For gauge theories, the exact representation of the field theory in terms of a countable number of discrete fields
with different resolutions suggest that a similar construction could be performed in using of gauge invariant degrees of
freedom. To understand how this might work imagine a set of gauge invariant Wilson placquets with a given lattice
spacing on a light front. The expectation is that on the light front these form an irreducible algebra of operators of
a given resolution. Decreasing the lattice spacing by a factor of 2, results in a new algebra that is an irreducible set
of operators for the increased resolution. The coarse-scale algebra should be a sub algebra of the fine-scale algebra.
In the same way that scaling functions on a file scale can be expressed as wavelet and scaling functions on a coarse
scale, is can be anticipated that there is something like a wavelet transform that generates the fine scale algebra in
terms of generators for the coarse scale algebra and independent gauge invariant operators that generate the degrees
of freedom in the fine scale algebra that are not in the coarse scale algebra. As in the wavelet case, this could be
repeated on every scale, leading to a countable set of independent operators that can generate placquets on all scales.
This should result in an irreducible set of gauge invariant operators on the light front, with a formally trivial vacuum.
While this construction is far from trivial, having a formally exact representation of gauge theories in terms of local
gauge invariant variables is a desirable goal.

Another class of applications where the wavelet representation may be useful is in quantum computing. The
fundamental property is that the local nature of the interactions involving different discrete modes means that transfer
matrices for small time steps can be expressed as simple quantum circuits. Some comments on using wavelet discretized
fields in quantum computing appear in references [29] and [33]. The advantage in the light front case is the trivial
nature of the vacuum.
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