# Light-front quantum mechanics and quantum field theory 

W. N. Polyzou

## The University of Iowa

## Dates

- 1949: Dirac introduced 3 simplified "forms of relativistic dynamics" Identified by having the largest kinematic (interaction-free) subgroups.

$$
\left[K^{i}, P^{j}\right]=i \delta_{i j}\left(H_{0}+V\right)
$$

- 1965: Infinite momentum frame
- 1973: Light front QFT
- 1976: Light front RQM
- 1991: First light-front conference

Heidelberg 1991 (\#1)

Palaiseau 2019 (\#38).

## What is a light front / light-front dynamics?

- Light front $:=$ hyperplane tangent to a light cone:

$$
x^{+}:=x^{0}+\hat{\mathbf{z}} \cdot \mathbf{x}=0
$$

- The light front is invariant under a 7 parameter (kinematic) subgroup of the Poincaré (1873 L'Ecole Polytechnique) group.
- Kinematic subgroup includes 3 translations tangent to the light-front, a 3 parameter subgroup of light-front preserving boosts, and rotations about the $\hat{z}$ axis.
- Light-front dynamics: Interactions appear in the (3) generators of transformations that do not preserve $x^{+}=0$.
- Light-front dynamics has the largest kinematic subgroup of Dirac's forms of dynamics.


## Special relativity in quantum theories

- Quantum measurements:

$$
P=|\langle\psi \mid \phi\rangle|^{2} \quad\langle\psi| A|\psi\rangle \quad \operatorname{Tr}(\rho A)
$$

- Inertial reference frames are related by Poincaré transformations: $x^{\mu} \rightarrow x^{\mu \prime}=\Lambda^{\mu}{ }_{\nu} x^{\nu}+a^{\mu}$.
- Special relativity (QM) - quantum measurements cannot be used to distinguish inertial reference frames.

$$
P^{\prime}=P \quad\left\langle\psi^{\prime}\right| A^{\prime}\left|\psi^{\prime}\right\rangle=\langle\psi| A|\psi\rangle \quad \operatorname{Tr}\left(\rho^{\prime} A^{\prime}\right)=\operatorname{Tr}(\rho A)
$$

- Wigner - 1939-necessary and sufficient conditions for relativistic invariance:

$$
\begin{gathered}
\left|\psi^{\prime}\right\rangle=U(\Lambda, a)|\psi\rangle \quad A^{\prime}=U(\Lambda, a) A U^{\dagger}(\Lambda, a) \\
\rho^{\prime}=U(\Lambda, a) \rho U^{\dagger}(\Lambda, a)
\end{gathered}
$$

$$
\begin{gathered}
S L(2, \mathbb{C}) \sim \text { Lorentz group } \\
X=x^{\mu} \sigma_{\mu}=\left(\begin{array}{cc}
x^{+} & \mathbf{x}_{\perp}^{*} \\
\mathbf{x}_{\perp} & x^{-}
\end{array}\right) \quad \operatorname{det}(X)=\left(x^{0}\right)^{2}-\mathbf{x}^{2} \\
X^{\prime}=\Lambda X \Lambda^{\dagger}+A \quad A:=a^{\mu} \sigma_{\mu} \quad \Lambda=e^{\frac{2}{2} \cdot \boldsymbol{\sigma}} \\
\operatorname{det}(\Lambda)=1, \quad x^{ \pm}=x^{0} \pm x^{3}, \quad x_{\perp}=x^{1}+i x^{2} \\
\Lambda^{\mu}{ }_{\nu}=\frac{1}{2} \operatorname{Tr}\left(\sigma_{\mu} \Lambda \sigma_{\nu} \Lambda^{\dagger}\right) \quad x^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\sigma_{\mu} X\right)
\end{gathered}
$$

Kinematic subgroup (preserves $x^{+}=0$ ):

$$
\begin{gathered}
\Lambda_{f b}(p)=\left(\begin{array}{cc}
\sqrt{p^{+} / m} & 0 \\
p_{\perp} / \sqrt{p^{+} m} & \sqrt{m / p^{+}}
\end{array}\right) \quad \text { light-front boosts } \\
\Lambda_{f r}(\phi)=\left(\begin{array}{cc}
e^{i \phi / 2} & 0 \\
0 & e^{-i \phi / 2}
\end{array}\right) \quad \text { rotations about } \hat{\mathbf{z}} \\
A_{f}=\left(\begin{array}{cc}
0 & a_{\perp}^{*} \\
a_{\perp} & a^{-}
\end{array}\right) \quad \text { translations tangent to LF }
\end{gathered}
$$

## Poincaré group generated by 10 1-parameter subgroups

- Generators

$$
P^{\mu} \quad J^{\mu \nu}=-J^{\nu \mu}
$$

- Generators transform like tensors

$$
\begin{gathered}
U(\Lambda, 0) P^{\mu} U^{\dagger}(\Lambda, 0)=\Lambda^{-1 \mu}{ }_{\nu} P^{\nu} \\
U(\Lambda, 0) J^{\mu \nu} U^{\dagger}(\Lambda, 0)=\Lambda^{-1 \mu}{ }_{\alpha} \Lambda^{-1 \nu}{ }_{\beta} J^{\alpha \beta}
\end{gathered}
$$

- Invariants:

$$
\begin{gathered}
M^{2}=-P^{\mu} P_{\mu} \quad W^{2}=W^{\mu} W_{\mu}=M^{2} S^{2} \\
W_{\mu}=\frac{1}{2} \epsilon_{\nu \alpha \beta \mu} P^{\nu} J^{\alpha \beta}
\end{gathered}
$$

## Light-front generators

- Kinematic

$$
\begin{gathered}
K^{3}=J^{30}, E^{1}=J^{10}-J^{31}, E^{2}=J^{20}+J^{23} \quad \text { light-front boosts } \\
J^{3}=J^{12} \quad \text { rotations about } \hat{\mathbf{z}} \\
P^{+}=P^{0}+P^{3}, \mathbf{P}_{\perp}=\left(P^{1}, P^{2}\right) \quad \text { translations tangent to } \mathbf{L F}
\end{gathered}
$$

- Dynamical

$$
F^{1}=J^{10}+J^{31}, F^{2}=J^{20}-J^{23}, P^{-}=P^{0}-P^{3}
$$

- Light-front dispersion relation and spectral conditions

$$
P^{-}=\frac{M^{2}+\mathbf{P}_{\perp}^{2}}{P^{+}} \geq 0 \quad P^{+} \geq 0
$$

## Particles, commuting observables, bases

- Light-front spin ( $P$ operators)

$$
S_{f}^{i}=\frac{1}{2} \sum \epsilon_{i j k} \Lambda_{f b}^{-1}(P)^{j}{ }_{\mu} \Lambda_{f b}^{-1}(P)^{k}{ }_{\nu} J^{\mu \nu}
$$

- Commuting observables

$$
M^{2}, S^{2}, \underbrace{P^{+}, P^{1}, P^{2}}_{\tilde{\mathrm{p}}}, S_{f}^{3}
$$

- Single-particle (irreducible) basis vectors

$$
|(m, s) \tilde{p}, \mu\rangle
$$

- Finite Poincaré transforms $\left(p^{\prime}=\Lambda p\right)$

$$
\begin{gathered}
U(\Lambda, a)|(m, s) \tilde{p}, \mu\rangle= \\
e^{i p^{\prime} \cdot a} \sum_{\nu}\left|(m, s) \tilde{p}^{\prime}, \nu\right\rangle \sqrt{\frac{p^{+\prime}}{p^{+}}} D_{\nu \mu}^{s}\left[\Lambda_{f b}^{-1}(\Lambda p) \Lambda \Lambda_{f b}(p)\right]
\end{gathered}
$$

## Observations

- $U(\Lambda, a)$ unitary.
- $(\Lambda, a) \in$ kinematic subgroup $\Rightarrow$

$$
e^{i p^{\prime} \cdot a} \sqrt{\frac{p^{+\prime}}{p^{+}}} D_{\nu \mu}^{s}\left[\Lambda_{f b}^{-1}(\Lambda p) \Lambda \Lambda_{f b}(p)\right]
$$

independent of $m$ !

- Light-front boosts are a subgroup $\Rightarrow$

If $\Lambda=\Lambda_{f b}\left(p^{\prime \prime}\right)$

$$
R_{w l f}\left(\Lambda_{f b}, p\right)=\Lambda_{f b}^{-1}\left(\Lambda_{f b}\left(p^{\prime \prime}\right) p\right) \Lambda_{f b}\left(p^{\prime \prime}\right) \Lambda_{f b}(p)=I
$$

i.e. the light-front Wigner rotation of a light-front boost is the identity (no rotations in subgroup).

## More light-front observations

- The light-front hyperplane contains light-like separated points - it is not a suitable initial value surface...
- . . but - if $P^{-}$is self-adjoint then $e^{-\frac{i}{2} P^{-} x^{+}}$is a strongly continuous unitary one-parameter group.
- If $R$ is a rotation (not about the $\mathbf{z}$-axis)

$$
R_{w / f}(R, p)=\Lambda_{f b}^{-1}(R p) R \Lambda_{f b}(p) \neq R
$$

depends on the momentum and mass and is not $R$.

- The means that general rotations are dynamical and light-front spins cannot be added with $S U(2)$ Clebsch-Gordan coefficients.
- The equation defining the particle's rest frame $p^{+}=p^{-}=m$ is dynamical!


## Equivalence to Dirac's instant form:

- Polar decomposition of $S L(2, \mathbb{C})$ matrices, canonical boosts and Melosh rotations

$$
\Lambda=\underbrace{\left(\Lambda \Lambda^{\dagger}\right)^{1 / 2}}_{\text {positive }} \underbrace{\left(\Lambda \Lambda^{\dagger}\right)^{-1 / 2} \Lambda}_{\text {unitary }}=\Lambda_{c}(p) R(p)
$$

- $\Lambda_{c}(p)=$ canonical boost; when $\Lambda=\Lambda_{f b}(p)$ the rotation $R(p)=R_{m}(p)$ is called a Melosh rotation:

$$
R_{m}(p)=\Lambda_{c}^{-1}(p) \Lambda_{b f}(p)
$$

- Canonical spin defined by:

$$
S_{c}^{i}=\frac{1}{2} \sum \epsilon_{i j k} \Lambda_{c}^{-1}(P)^{j}{ }_{\mu} \Lambda_{c}^{-1}(P)^{k}{ }_{\nu} J^{\mu \nu}=\sum_{j} R_{m}^{i j}(P) S_{f}^{j}
$$

- The instant and light-front single particle bases are related by:

$$
\left|(m, s) \mathbf{p}, \mu_{c}\right\rangle=\sum_{\mu_{f}}\left|(m, s) \tilde{\mathbf{p}}, \mu_{f}\right\rangle \sqrt{\frac{p^{+}}{\epsilon_{m}(p)}} D_{\mu_{f} \mu_{c}}^{s}\left[R_{m}^{-1}(p)\right]
$$

## Equivalence to Dirac's instant form:

- Any unitary representation of the Poincaré group can be decomposed into a direct integral of irreducible representations.
- Instant and front-form dynamics are related by

$$
\left|(m, s) \mathbf{p}, \mu_{c}\right\rangle=\sum_{\mu_{f}}\left|(m, s) \tilde{\mathbf{p}}, \mu_{f}\right\rangle \sqrt{\frac{p^{+}}{\epsilon_{m}(p)}} D_{\mu_{f} \mu_{c}}^{s}\left[R_{m}^{-1}(p)\right]
$$

on each irreducible subspace.

- The coefficients

$$
\sqrt{\frac{p^{+}}{\epsilon_{m}(p)}} D_{\mu_{f} \mu_{c}}^{s}\left[R_{m}^{-1}(p)\right]
$$

are dynamical - they require diagonalizing $M$ and $S$

## Systems of particles (useful basis choices)

- Tensor product basis

$$
\begin{gathered}
\left|\left(m_{1}, s_{1}\right) \tilde{\mathbf{p}}_{1}, \mu_{1}, \cdots,\left(m_{n}, s_{n}\right) \tilde{\mathbf{p}}_{n}, \mu_{n}\right\rangle=\otimes_{i}\left|\left(m_{i}, s_{i}\right) \tilde{\mathbf{p}}_{i}, \mu_{i}\right\rangle \\
\left.\otimes_{i}\left\langle\left(m_{i}, s_{i}\right) \tilde{\mathbf{p}}_{i}, \mu_{i}\right| U\left(\Lambda_{k}, a_{k}\right)|\psi\rangle=\langle\psi| U_{0}^{\dagger}\left(\Lambda_{k}, a_{k}\right)\left|\otimes_{i}\right|\left(m_{i}, s_{i}\right) \tilde{\mathbf{p}}_{i}, \mu_{i}\right\rangle^{*}
\end{gathered}
$$

- Alternative (LF boost invariant) basis

$$
\begin{gathered}
\left|\tilde{P}, \xi_{1}, \mathbf{k}_{\perp 1}, \mu_{1}, \cdots, \xi_{n}, \mathbf{k}_{\perp n}, \mu_{n}\right\rangle \\
\tilde{\mathbf{P}}:=\sum_{i} \tilde{\mathbf{p}}_{i}, \quad \xi_{i}:=\frac{p_{i}^{+}}{P^{+}}, \quad \sum_{i} \xi_{i}=1 \\
\mathbf{k}_{\perp i}:=\mathbf{p}_{\perp i}-\xi_{i} \mathbf{P}_{\perp} \quad \sum_{i} \mathbf{k}_{\perp i}=0 \\
\prod d \tilde{\mathbf{p}}_{i} \rightarrow d \tilde{\mathbf{P}} \prod_{i}\left(d \xi_{i} d^{2} \mathbf{k}_{\perp i}\right) \delta\left(\sum_{j} \xi_{j}-1\right) \delta\left(\sum_{k} \mathbf{k}_{\perp k}\right)
\end{gathered}
$$

- $\xi_{i}, \mathbf{k}_{\perp i}$ and $\mu_{i}$ are invariant with respect to light-front boosts! (no Lorentz contractions!)


## Irreducible light-front bases

- Clebsch-Gordan coefficients for the Poincaré group in light-front irreducible bases (construction summarized below):
- Convert single-particle spins to canonical spins with Melosh rotations.
- Canonical spin - Wigner rotation of a rotation is the rotation $\rightarrow$ they can be added with $S U(2)$ Clebsch-Gordan coefficients
- Add canonical spins and relative orbital angular momenta with $S U(2)$ Clebsch-Gordan coefficients in two-body rest frame $\left(\Lambda_{c}(R p)^{-1} R \Lambda_{c}(0)=R\right)$.
- Boost result with light-front boost.
- Needed to formulate scattering asymptotic conditions.


## Light-front Clebsch-Gordan coefficients

$$
\begin{gathered}
|(k, j) \tilde{\mathbf{P}}, \mu ; I, s\rangle= \\
\sum\left|\left(m_{1}, s_{1}\right) \tilde{\mathbf{p}}_{1}, \mu_{1}\right\rangle\left|\left(m_{2}, s_{2}\right) \tilde{\mathbf{p}}_{2}, \mu_{2}\right\rangle \times \\
D_{\mu_{1} \nu_{1}}^{s_{1}}\left[\Lambda_{b f}^{-1}\left(k_{1}\right) \Lambda_{c}^{-1}\left(k_{1}\right)\right] D_{\mu_{2} \nu_{2}}^{s_{2}}\left[\Lambda_{b f}^{-1}\left(k_{2}\right) \Lambda_{c}^{-1}\left(k_{2}\right)\right] Y_{l m}\left(\hat{\mathbf{k}}_{1}\right) \times \\
\left\langle s_{s}, \nu_{1}, s_{2}, \nu_{2} \mid s, \nu_{s}\right\rangle\left\langle s, \nu_{s}, l, m \mid j, \mu\right\rangle \sqrt{\frac{p_{1}^{+} p_{2}^{+}\left(\epsilon_{1}(k)+\epsilon_{2}(k)\right)}{\epsilon_{1}(k) \epsilon_{2}(k)\left(p_{1}^{+}+p_{2}^{+}\right)}}
\end{gathered}
$$

where the variables are related by

$$
\begin{gathered}
\tilde{\mathbf{P}}=\tilde{\mathbf{p}}_{1}+\tilde{\mathbf{p}}_{2} \quad k_{1}=k=\Lambda_{b f}^{-1}(P) p_{1} \quad k_{2}=\Lambda_{b f}^{-1}(P) p_{2} \\
M=\sqrt{\mathbf{k}^{2}+m_{1}^{2}}+\sqrt{\mathbf{k}^{2}+m_{2}^{2}}=\epsilon_{1}(k)+\epsilon_{2}(k)
\end{gathered}
$$

Dynamics

$$
\begin{gathered}
P^{-}=\frac{\mathbf{P}_{0 \perp}^{2}+M_{0}^{2}+V}{P_{0}^{+}} \\
{\left[V, G_{i}\right]=0 \quad G_{i}=\text { kinematic generators }}
\end{gathered}
$$

- These conditions preserve the kinematic subgroup, but they are not sufficient to ensure a relativistically (rotationally) invariant dynamics.
- A necessary and sufficient condition for rotational covariance is the requirement that the results of any calculations are independent of the orientation of the light front (Karmanov, Fuda).
- If $U(R)$ exists

$$
U\left(R^{-1}, 0\right) U_{0}(R, 0) \quad R \hat{\mathbf{z}}=\hat{\mathbf{n}}
$$

is an S-matrix preserving unitary transformation that changes orientation of light front.

## Bakamjian-Thomas solution (LF QM)

- The light-front spin ( $s_{f}$ ) and dynamical angular momentum components (J) are related by

$$
\mathbf{J}_{\perp}=\frac{1}{P^{+}}\left[\frac{1}{2}\left(P^{+}-P^{-}\right)\left(\hat{\mathbf{z}} \times \mathbf{E}_{\perp}\right)-\left(\hat{\mathbf{z}} \times \mathbf{P}_{\perp}\right) K^{3}+\mathbf{P}_{\perp} s_{f}^{3}+M \mathbf{s}_{f \perp}\right]
$$

- Require in addition [ $V, \mathbf{s}_{f 0}$ ] $=0$ (i.e. the spectrum of $\mathbf{s}$ is independent of interactions, therefore choose $\mathbf{s}_{f}=\mathbf{s}_{f 0}$ ).
- For $N>2$ violates $U(\Lambda, a) \rightarrow U_{A}(\Lambda, a) \otimes U_{B}(\Lambda, a)$ for asymptotically separated subsystems $A$ and $B$ (needed for localized tests of special relativity).
- Cluster properties for $(N \geq 3)$ can be recovered in a recursive construction (Sokolov) that generates frame-dependent many-body interactions that maintain cluster properties in all inertial frames.


## Scattering Theory - light-front dynamics

$$
\begin{gathered}
S=\Omega_{+}^{\dagger} \Omega_{-} \\
\Omega_{ \pm}:=\lim _{t \rightarrow \pm \infty} e^{i H t} \Phi e^{-i H_{0} t}=\lim _{t \rightarrow \pm \infty} e^{i\left(P_{0}^{+}+P^{-}\right) \frac{t}{2}} \Phi e^{-i\left(P_{0}^{+}+P_{0}^{-}\right) \frac{t}{2}}= \\
\lim _{t \rightarrow \pm \infty} e^{i P^{-\frac{t}{2}} \Phi e^{-i P_{0}^{-\frac{t}{2}}}=\lim _{t \rightarrow \pm \infty} e^{i\left(M^{2}+\mathbf{P}_{\perp 0}^{2}\right) \frac{t}{2 P_{0}^{+}} \Phi e^{-i\left(M_{0}^{2}+\mathbf{P}_{\perp 0}^{2}\right) \frac{t}{2 P_{0}^{+}}}=}} \begin{array}{l}
\lim _{t^{\prime} \rightarrow \pm \infty} e^{i M^{2} t^{\prime}} \Phi e^{-i M_{0}^{2} t^{\prime}}=\lim _{t^{\prime} \rightarrow \pm \infty} e^{i M t^{\prime}} \Phi e^{-i M_{0} t^{\prime}}
\end{array},
\end{gathered}
$$

## Electron scattering - current matrix elements

- For space-like momentum transfers all matrix elements of a conserved covariant current can be constructed from matrix elements of $I^{+}(0)$ in a frame with momentum transfer along the $\hat{\mathbf{z}}$-axis (Drell-Yan-West frame).
- These matrix elements are light-front boost invariant $\left(p^{\prime \prime}=\Lambda_{f b} p, \quad p^{\prime \prime \prime}=\Lambda_{f b} p^{\prime}\right)$

$$
\begin{aligned}
& \left\langle(m, s) \tilde{\mathbf{p}}^{\prime}, \mu^{\prime}\right| I^{+}(0)|(m, s) \tilde{\mathbf{p}}, \mu\rangle= \\
& \left\langle(m, s) \tilde{\mathbf{p}}^{\prime \prime \prime}, \mu^{\prime}\right| I^{+}(0)|(m, s) \tilde{\mathbf{p}}, \mu\rangle=
\end{aligned}
$$

$$
\left\langle(m, s) \mu^{\prime}\left\|I^{+}(0)\right\|(m, s) \mu\right\rangle
$$

## Remarks - observations on currents

- More generally, all components of the operator $I^{\mu}(0)$ can be expressed in terms of $I^{+}(0)$ and the Poincaré generators.
- For one-body currents the momentum transferred to the target is the same as the momentum transferred to a constituent particle in all frames related by light-front boosts. (only form where this is true!)
- Dynamical constraints imply impulse current operators violate Lorentz covariance.


## Light-Front quantum field theory

Free fields

$$
\phi(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \mathbf{p}}{\sqrt{2 \omega_{m}(\mathbf{p})}}\left(e^{i p \cdot x} a(\mathbf{p})+e^{-i p \cdot x} a^{\dagger}(\mathbf{p})\right)
$$

Change variables $\mathbf{p} \rightarrow \tilde{p}$ :

$$
\begin{gathered}
\left|\frac{\partial(\tilde{\mathbf{p}})}{\partial(\mathbf{p})}\right|=\frac{p^{+}}{\epsilon_{m}(\mathbf{p})} \quad a(\tilde{\mathbf{p}}):=a(\mathbf{p}) \sqrt{\frac{\epsilon_{m}(\mathbf{p})}{p^{+}}} \\
{\left[a(\mathbf{p}), a^{\dagger}\left(\mathbf{p}^{\prime}\right]=\delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \quad \Leftrightarrow \quad\left[a(\tilde{\mathbf{p}}), a^{\dagger}\left(\tilde{\mathbf{p}}^{\prime}\right]=\delta\left(\tilde{\mathbf{p}}-\tilde{\mathbf{p}}^{\prime}\right)\right.\right.} \\
\phi(x)=\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d p^{+} \theta\left(p^{+}\right)}{\sqrt{2 p^{+}}} d \mathbf{p}_{\perp}\left(e^{i p \cdot x} a(\tilde{\mathbf{p}})+e^{-i p \cdot x} a^{\dagger}(\tilde{\mathbf{p}})\right)
\end{gathered}
$$

Fields restricted to the light-front are irreducible!

- Fourier transform of field restricted to $x^{+}=0$ :

$$
\begin{gathered}
\phi\left(x^{+}=0, p^{+}, \mathbf{p}_{\perp}\right)= \\
\frac{1}{(2 \pi)^{3 / 2}} \int d x^{-} d \mathbf{x}_{\perp} e^{i\left(\frac{x^{-} p^{+}}{2}-\mathbf{x}_{\perp} \cdot \mathbf{p}_{\perp}\right)} \phi\left(0, x^{-}, \mathbf{x}_{\perp}\right)= \\
\theta\left(p^{+}\right) \sqrt{\frac{2}{p^{+}}} a\left(p^{+}, \mathbf{p}_{\perp}\right)+\theta\left(-p^{+}\right) \sqrt{\frac{2}{-p^{+}}} a^{\dagger}\left(-p^{+}, \mathbf{p}_{\perp}\right)
\end{gathered}
$$

- Possible to determine both $a(\tilde{\mathbf{p}})$ and $a^{\dagger}(\tilde{\mathbf{p}})$ without constructing conjugate momentum or going off of the light front.
- Canonical case requires $\pi(\mathbf{x}, t=0)=-i[H, \phi(\mathbf{x}, t=0)]$ which involves the dynamics.

Creation and annihilation operators in terms of fields on the light front:

$$
\begin{aligned}
a(\tilde{\mathbf{p}}) & =\sqrt{\frac{p^{+}}{2}} \theta\left(p^{+}\right) \phi\left(x^{+}=0, p^{+}, \mathbf{p}_{\perp}\right) \\
a^{\dagger}(\tilde{\mathbf{p}}) & =\sqrt{\frac{p^{+}}{2}} \theta\left(p^{+}\right) \phi\left(x^{+}=0,-p^{+}, \mathbf{p}_{\perp}\right)
\end{aligned}
$$

- This means that if $A$ satisfies

$$
\left[\phi\left(x^{+}=0, \tilde{\mathbf{x}}\right), A\right]=0 \rightarrow A=\text { constant }
$$

Field dynamics - naive expectation

- Noether's theorem on a light front gives expressions for all ten Poincaré generators in terms of fields restricted to the light front.
- Irreducibility of fields on the light front suggests that all of the generators can be expressed in terms of the irreducible Fock algebra restricted to a light front.
- Using Noether's theorem to compute the generators for a scalar field gives

$$
\begin{gathered}
P^{+}=4 \int_{x^{+}=0} d \tilde{\mathbf{x}}: \frac{\partial \phi(x)}{\partial x^{-}} \frac{\partial \phi(x)}{\partial x^{-}}: \\
P^{i}=2 \int_{x^{+}=0} d \tilde{\mathbf{x}}: \frac{\partial \phi(x)}{\partial x^{-}} \frac{\partial \phi(x)}{\partial x^{i}}: \\
\mathcal{J}^{3}=2 \int_{x^{+}=0} d \tilde{\mathbf{x}}: \frac{\partial \phi(x)}{\partial x^{-}}\left(x^{j} \frac{\partial \phi(x)}{\partial x^{i}}-x^{i} \frac{\partial \phi(x)}{\partial x^{j}}\right): \\
E^{i}=2 \int_{x^{+}=0} d \tilde{\mathbf{x}}: \frac{\partial \phi(x)}{\partial x^{-}}\left(2 x^{i} \frac{\partial \phi(x)}{\partial x^{-}}-x^{+} \frac{\partial \phi(x)}{\partial x^{i}}\right): \\
K^{3}=4 \int_{x^{+}=0} d \tilde{\mathbf{x}}: \frac{\partial \phi(x)}{\partial x^{-}}\left(\frac{\partial \phi(x)}{\partial x^{-}} x^{-}-\frac{\partial \phi(x)}{\partial x^{+}} x^{+}\right):
\end{gathered}
$$

## Dynamical generators

- Noether's theorem gives expressions for dynamical generators in terms of operator in the light front algebra.
- The longitudinal boost generator becomes kinematic when $x^{+}$is set to 0 .

$$
\begin{gathered}
K^{3}=-4 \int_{x^{+}=0} d \tilde{\mathbf{x}}: \phi(x)\left(\frac{\partial^{2} \phi(x)}{\partial x^{-2}} x^{-}+\frac{\partial \phi(x)}{\partial x^{-}}-\frac{\partial^{2} \phi(x)}{\partial x^{-} \partial x^{+}} x^{+}\right): \\
P^{-}=-4 \int_{x^{+}=0} d \tilde{\mathbf{x}}: \phi(x) \frac{\partial^{2} \phi(x)}{\partial x^{-} \partial x^{+}}: \\
F^{i}=-2 \int_{x^{+}=0} d \tilde{\mathbf{x}}: \phi(x)\left(2 x^{i} \frac{\partial^{2} \phi(x)}{\partial x^{-} \partial x^{+}}-x^{-} \frac{\partial^{2} \phi(x)}{\partial x^{-} \partial x^{i}}-\frac{\partial \phi(x)}{\partial x^{i}}\right):
\end{gathered}
$$

Consequences of the spectral condition ( $P^{+} \geq 0$ )

- $P^{+}$kinematic $\Rightarrow$

$$
P^{+}=\sum P_{i}^{+}=0 \quad P_{i}^{+}=0
$$

- Interactions preserve kinematic subgroup $\Rightarrow$

$$
\left[V, P^{+}\right]=0
$$

- Translational invariance of vacuum $\Rightarrow$

$$
\begin{gathered}
P^{+}|0\rangle=0 \quad P_{i}^{+}|0\rangle=0 \\
P^{+} V|0\rangle=V P^{+}|0\rangle=0
\end{gathered}
$$

- Insert a complete set of eigenstates of $P^{+}$

$$
V|0\rangle=|0\rangle\langle 0| V|0\rangle=c|0\rangle
$$

- The light-front Fock vacuum is a normalizable translationally invariant eigenstate of both the free and interacting theory.


## Free field comments

- Solving the mass $m$ field equations using (1) irreducible light-front algebra and (2) the free Fock vacuum gives the correct free field Wightman functions.
- The Wightman functions are moments of the vacuum generating functional.
- This means that solving the field equations using the kinematic vacuum generates the physical (mass $m$ ) vacuum.


## Is the vacuum trivial?

- The pure creation terms in the interactions (after normal ordering) are responsible for changing the vacuum.
- For a $\phi^{4}(x)$ interaction the pure creation part of the light-front interaction has the structure:

$$
\begin{aligned}
& \int \frac{\theta\left(p^{+}\right) \delta\left(p^{+}\right) d p^{+}}{\left(p^{+}\right)^{2} \prod \xi_{i}} \prod d \mathbf{p}_{i \perp} d \xi_{i} \delta\left(\sum \mathbf{p}_{i \perp}\right) \delta\left(\sum \xi_{i}-1\right) \times \\
& a^{\dagger}\left(\xi_{1} p^{+}, \mathbf{p}_{\perp 1}\right) a^{\dagger}\left(\xi_{2} p^{+}, \mathbf{p}_{\perp 2}\right) a^{\dagger}\left(\xi_{3} p^{+}, \mathbf{p}_{\perp 3}\right) a^{\dagger}\left(\xi_{4} p^{+}, \mathbf{p}_{\perp 4}\right)
\end{aligned}
$$

- The problem is that while $\frac{\theta\left(p^{+}\right) \delta\left(p^{+}\right) d p^{+}}{p^{+2} \Pi \xi_{i}}$ vanishes for $p^{+} \neq 0$, it is both singular and not well defined for $p^{+}=0$.

Zero modes

- Noether's theorem on the light front gives Poincaré generators with no dynamical information.
- Dynamics must be put in by hand to be consistent with canonical field theory.
- Defining non-trivial theories require both field equations and a renormalization prescription to define local operator products in generators.
- $p^{+}=0$ gets mapped into $p^{i}=-\infty$ on changing light front orientation.
- Rotational covariance relates $|\mathbf{p}| \rightarrow \infty$ divergences with $p^{+} \rightarrow 0$ divergences. (see talk by Beuf)
- For light-front representations this may require $p^{+}=0$-modes to renormalize the theory and maintain equivalence with the renormalized canonical theory.

Additional consequences of $P^{+}>0$ : Let $Q$ be a charge by integrating a not-necessarily conserved current over the light front.

- $P^{+}$kinematic, interactions preserve kinematic subgroup

$$
P^{+}=\sum P_{i}^{+}=0 \quad P_{i}^{+}=0 \quad\left[Q, P^{+}\right]=0
$$

- Translational invariance of vacuum

$$
P^{+}|0\rangle=0 \quad P^{+} Q|0\rangle=Q P^{+}|0\rangle=0
$$

- Insert a complete set of eigenstates of $P^{+}$

$$
Q|0\rangle=|0\rangle\langle 0| Q|0\rangle=c|0\rangle
$$

- The light-front Fock vacuum is necessarily an eigenstate of $Q$.
- Vacuum contains no information without adding dynamical information-Spontaneous symmetry breaking can be recovered by solving the dynamics with an explicit symmetry breaking term (Beane) and letting the symmetry breaking term $\rightarrow 0$. This generates the physical vacuum.


## Summary of properties

- Largest kinematic subgroup.
- 3-Parameter subgroups of kinematic boosts and translations.
- Light-front boosts have no Wigner rotations.
- Angular momentum dynamical.
- Orbital angular momentum dynamical.
- $\left[J_{\perp}, M_{0}\right] \neq 0$
- Cluster properties of $U(\Lambda, a) \rightarrow$ spin dynamical.
- Adding angular only makes sense asymptotically with cluster properties.
- Frame-independent impulse approximations.
- Rest frame defined dynamically.
- Irreducibility of fields on the light front.
- Dynamical vacuum = Fock vacuum (on irreducible light-front algebra).
- Equivalent to other forms of dynamics.
- Characteristic surfaces - self adjoint $P^{-}$defines dynamics - Noether's theorem - requires additional dynamical information.
- Trivial vacuum plus dynamical information generates the physical vacuum (?).

Sokolov construction ( $N=3$ example)

$$
\begin{aligned}
& P^{-}=
\end{aligned}
$$

- Method preserves Poincaré invariance, cluster properties and spectral condition (for suitable interactions).
- Preserves kinematic subgroup (for suitable interactions).
- $A_{i j, k}$ generates frame-dependent many interactions.
- Resulting spin is dynamical.

Two-body scattering (LF QM)

$$
\begin{gathered}
M:=\sqrt{m_{1}^{2}+\mathbf{k}^{2}+2 m_{r e d} V_{n n}}+\sqrt{m_{2}^{2}+\mathbf{k}^{2}+2 m_{r e d} V_{n n}} \\
\left\langle\left(k^{\prime}, j^{\prime}\right) \tilde{\mathbf{P}}^{\prime}, \mu^{\prime}, l^{\prime}, s^{\prime}\right| V_{n n}|(k, j) \tilde{\mathbf{P}}, \mu, l, s\rangle= \\
\delta_{j^{\prime} j} \delta_{\mu^{\prime} \mu} \delta\left(\tilde{\mathbf{P}}^{\prime}-\tilde{\mathbf{P}}\right)\left\langle k^{\prime}, l^{\prime}, s^{\prime}\left\|V_{n n}^{j}\right\| k, l, s\right\rangle
\end{gathered}
$$

The invariance principle gives, since $M=M\left(H_{n r}\right)$ :

$$
\begin{gathered}
\left\langle\left(k^{\prime}, j\right) I^{\prime}, s^{\prime}\right| \operatorname{Sexp}|(k, j) I, s\rangle= \\
\left\langle\left(k^{\prime}, j\right) I^{\prime}, s^{\prime}\right| \Omega_{+}\left(H_{n r}, H_{0 n r}\right) \Omega_{-}^{\dagger}\left(H_{n r}, H_{0 n r}\right)|(k, j) I, s\rangle= \\
\left\langle\left(k^{\prime}, j\right) I^{\prime}, s^{\prime}\right| \Omega_{+}\left(M, M_{0}\right) \Omega_{-}^{\dagger}\left(M, M_{0}\right)|(k, j) I, s\rangle
\end{gathered}
$$

Non-relativistic interactions fit to experiment can be reinterpreted as light-front interactions fit to same data.

- For the free field solving gives the field $\phi(x)$ with $x^{+} \neq 0$.
- The role of the field equations can be seen for the case of a free scalar field of mass $m$. The light-front limit of the two-point Wightman function is $(z=x-y)$

$$
\langle 0| \phi(x) \phi(y)|0\rangle \rightarrow-i \frac{\epsilon\left(z^{-}\right) \delta\left(\mathbf{z}_{\perp}^{2}\right)}{4 \pi}-\frac{m}{4 \pi^{2} \sqrt{\mathbf{z}_{\perp}^{2}}} K_{1}\left(m \sqrt{\mathbf{z}_{\perp}^{2}}\right)
$$

while a direct calculation using fields restricted to the light front gives

$$
\begin{gathered}
\langle 0| \phi(x) \phi(y)|0\rangle= \\
\frac{1}{2(2 \pi)^{3}} \int \frac{\theta\left(q^{+}\right) d q^{+} d \mathbf{q}_{\perp}}{q^{+}} e^{-i \frac{q^{+}}{2} z^{-}+i \mathbf{q}_{\perp} \cdot \mathbf{z}_{\perp}}
\end{gathered}
$$

which knows nothing about the mass or dynamics (recall that the dynamics had to be put in "by hand".)

