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I. SINGLE NUCLEON HILBERT SPACE - RELATIVISTIC TREATMENT OF

SPIN

The single nucleon on-shell four momenta (m = nucleon mass) are:

p1, p2 pi = (
√

p2
i +m2

i ,pi) = (ωmi
(p),pi) i = 1, 2. (1)

It is convenient to use the 2 × 2 matrix representation of four vectors for the relativistic

treatment of spin. Four vectors can be represented by 2 × 2 Hermitian matrices:

P := pµσµ =

 ωm(p) + pz px − ipy

px + ipy ωm(p) − pz

 σµ := (I,σσσ), (2)

where σσσ are the Pauli matrices. The identity

Tr(σµσν) = 2δµν (3)

can be used to extract the components of the four vector pµ from the matrix P

pµ = 1
2

Tr(σµP ). (4)

Note

P = P † det(P ) = (p0)2 − p2 = m2. (5)

Since the determinant is the proper (time)2 of the four vector, real Lorentz transformations

are linear transformations that preserve the determinant and Hermiticity (reality) of P .

They have the general form

P → P ′ = ±ΛPΛ† det(Λ) = 1. (6)

The − sign is for space-time reflections. For det(Λ) ̸= 0:

Λ = eM det(Λ) = eTr(M) = 1 → Tr(M) = 2πin. (7)

Since any 2 × 2 matrix M can be expressed as M = M0I + M · σσσ with Tr(σσσ) = 0 it follows

that (7) requires 2M0 = 2πin which means

Λ = ±eM·σσσ. (8)
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In this case both signs lead to the same transformation. The matrix in the exponent is

complex. It can be expressed in the form

M · σσσ = 1
2

(ρρρ+ iθθθ) · σσσ (9)

where θθθ is the angle of a rotation and ρρρ is the rapidity of a canonical (rotationless) Lorentz

boost:

e
i
2θθθ·σσσ = σ0 cos(θ

2
) + i sin(θ

2
)θ̂θθ · σσσ (10)

e
1
2ρρρ·σσσ = σ0 cosh(ρ

2
) + sinh(ρ

2
)ρ̂ρρ · σσσ (11)

where

cosh(ρ) = p0/m sinh(ρ) = |p|/m ρ̂ρρ = p̂. (12)

The corresponding 4 × 4 Lorentz transformations Λµ
ν are related to the 2 × 2 matrix Λ by

Λµ
ν = 1

2
Tr(σµΛσνΛ†). (13)

A general 2 × 2 Λ has a polar decomposition as a product of a unitary matrix R followed

by a positive Hermitian matrix P :

Λ = PR = (ΛΛ†)1/2(ΛΛ†)−1/2Λ (14)

where

(ΛΛ†)1/2 = e
1
2ρρρ·σσσ := P = P † (ΛΛ†)−1/2Λ = e

i
2θθθ·σσσ := R = (R†)−1 (15)

which means that any Lorentz transformation can be expressed as a rotation followed by a

rotationaless boost. Since a rotation leaves (m, 0, 0, 0) unchanged, Λ and P = (ΛΛ†)1/2 are

both boosts to the same final momentum. They differ by the rotation R = (ΛΛ†)−1/2Λ. The

rotationless boost P = e
1
2ρρρ·σσσ is special because Λ is a positive Hermitian matrix. It is also

called the canonical boost.

Remark - these represent passive coordiante changes rather than active transformations.

Spin is defined as the angular momentum of a particle or system in its rest frame. A

natural question is how to compare spins in different frames.

One way to compare the spins of particles with different momenta is to boost them to a

common frame with a standard type of boost. The common frame is usually taken as the

rest frame. There are many possible choices of the standard boost. Each choice of standard
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boost defines a different spin observable - it is the spin that would be measured in the rest

frame if the particle was boosted to the rest frame with the chosen standard boost.

The inverse of the boost Λ = PR it is R†P−1 which means that the angular momentum in

the rest frame depends on the choice of boost. If we let Λ = Bx(p) be a boost parameterized

by momentum, (actually they are parameterized by the 4 velocity) a spin operator can be

defined by

six = 1
2
ϵijkΛ(B−1

x (pop))iµΛ(B−1
x (pop))iνJµν (16)

where (1) Jµν is the angular momentum tensor,

Λ(B−1
x (pop))iµ (17)

is the 4×4 matrix representation of the boost B−1
x (p) with the parameter pµ replaced by the

corresponding operator pµop. It follows from these definitions and the Poincaré commutation

relations that

[six, sjx] = iϵijkskx (18)

independent of the choice of boost, where all components of sx commute with pµop for any

choice of boost.

Using pi, ẑ ·sx, the total and z-component of isospin as commuting observables, the single

nucleon basis vectors are:

|(m, 1
2
,
1
2

)p,msi,mti⟩ (19)

where mti is the projection of the isospin of the nucleon.

The choice of boost used to define the spin is consistent with the following Lorentz

transformation property

U(Bx(p/m))|(m, 1
2
,
1
2

)0,msi,mti⟩ = |(m, 1
2
,
1
2

)p,msi,mti⟩
√
ωm(p)
m

(20)

where the spin defined with the x-boost remains unchanged in boosting from the rest frame to

the frame where the particle has momentum p with Bx(p/m). The square root factors ensure

that this transformation is unitary when the basis vectors have delta-function normalizations:

⟨(m, 1
2
,
1
2

)p′,m′
si,m

′
ti|(m,

1
2
,
1
2

)p,msi,mti⟩ = δ(p′ − p)δm′
simsi

δm′
timti

. (21)

Since rotations leave the rest vector invariant, they can only transform the spin

U(R)|(m, 1
2
,
1
2

)0,msi,mti⟩ =
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∑
m′

si

|(m, 1
2
,
1
2

)0,m′
si,mti⟩D1/2

m′
simsi

[R] (22)

where

D
1/2
m′

simsi
[R]; = ⟨1

2
,m′

si|U(R)|1
2
,msi⟩ (23)

is the Wigner D-function. Since any Lorentz transformation can be expressed in terms of

boosts to and from the rest frame and rotations in the rest frame, it follows that

U(Λ)|(m, 1
2
,
1
2

)k,msi,mti⟩x =

|(m, 1
2
,
1
2

)ΛΛΛ(p),m′
si,mti⟩x

√
ωm(ΛΛΛ(Λ)p
ωm(p)

D
1/2
m′

simsi
[B−1

x (Λ)p/m)ΛBx(p/m)].

(24a)

(24b)

The subscript x on the states indicates the type of spin that is used as a commuting

observable. Equation (102) defines a unitary representation of the Lorentz group on the

single-nucleon subspace. The matrix

Rw(Λ, p) := B−1
x (Λp/m)ΛBx(p/m) (25)

is a SU(2) Wigner rotation. The subscript x indicates that Wigner rotations depend on the

choice of boost, Bx(p/m).

The canonical boost is special because it has the property that the Wigner rotation of a

rotation is the rotation:

B−1
c (Rp/m)RBc(p/m) = R. (26)

This can be rewritten as

RBc(p/m)R−1 = Bc(Rp/m). (27)

This follows because

RBc(p/m)R−1 = Re
1
2ρρρ·σσσR−1 = e

1
2ρρρ·(RσσσR−1) = e

1
2 (ρρρ)·Λ(R−1)σσσ = e

1
2 (Λ(R)ρρρ)·σσσ (28)

which is the desired result. The important property is that the canonical boost Wigner

rotation of the rotation is the rotation, independent of p. This is needed for adding spins

in a many-body system, where each particle has a different momentum. Sinc they all rotate

the same way the spins can be added with ordinary SU(2) Clebsch-Gordon coefficients. The

canonical spin is the only spin with this property.
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If the spin is not canonical, it can be converted to canonical spin using a momentum-

dependent rotation:

|(m, 1
2
,
1
2

)p1,msx1,mt1⟩ =

= U(Bx(pi/m))|(m, 1
2
,
1
2

)01,msx1,mt1⟩
√

m

ωm(pi/m)

= U(Bc(pi/m))U(B−1
c (pi/m))U(Bx(pi))|(m,

1
2
,
1
2

)01,msx1,mt1⟩
√

m

ωm(pi/m)

= U(Bc(pi/m))|(m, 1
2
,
1
2

)01,m
′
sc1,mt1⟩

√
m

ωm(pi/m)
D

1/2
m′

sc1msx1
[B−1

c (pi/m)Bx(pi/m)]

= |(m, 1
2
,
1
2

)p1,m
′
sc1,mt1⟩D1/2

m′
sc1msx1

[B−1
c (pi/m)Bx(pi/m)] (29)

where [B−1
c (pi/m)Bx(pi/m)] is a momentum-dependent SU(2) rotation called a generalized

Melosh rotation. In these expression the subscript c =canonical spin, x=spin constructed

with the x boost. The rotation (29) relates the x-spin and canonical spin basses.

II. TWO-BODY BASES AND PARTIAL WAVE ANALYSIS

Most few-body calculations use a partial wave basis. In the relativistic case the relevant

generalization is a Poincaré irreducible basis.

A basis for the two-free-nucleon system is the tensor product of 2 single nucleon states:

|(m, 1
2
,
1
2

)p1,ms1,mt1⟩ × |(m, 1
2
,
1
2

)p2,ms2,mt2⟩. (30)

In what follows these basis vectors are expressed as linear superpositions of basis vectors that

transform irreducibly. To do this first define the total four momentum of non-interacting

system:

P µ
0 = pµ1 + pµ2 (31)

The invariant mass of non-interacting system is

M2
0 = ηµνP

µ
0 P

ν
0 ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (32)
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The four velocity of non-interacting system is

Qµ
0 = P µ

0 /M0. (33)

Also define

kµi = Λ(B−1
x (Q0))µνpνi . (34)

which represents the momentum of particle i if it was transformed to the rest frame with

an x-boost. Here Λ(B−1
x (Q0))µν is considered to be a matrix of multiplication operators.

The ki are operators whose eigenvalues are the momentum of each nucleon (particle) when

it is transformed to the 0 total momentum frame with the boost B−1
x (Q). Here I assume

that the boost used to define ki is the same as the one used to define the spin. Note that

k1 + k2 = 0. It is important to note that kµ does not transform like a 4-vector. Instead it

undergoes Wigner rotations:

kµ′ = Λ(B−1(ΛP )Λp1 = B−1(ΛP )ΛB(P ))µνkν1 (35)

The next step is to consider canonical spin two-body basis states (30) in the non-

interacting two-body rest frame

|(m, 1
2
,
1
2

)k1,ms1c,mt1⟩ × |(m, 1
2
,
1
2

) − k1,ms2c,mt2⟩ (36)

since k2 = −k1 this only depends on k1. Here these vectors represent products of ordinary

single-particle states in the system rest frame. Next we use spherical Harmonics to perform

a partial wave decomposition of the angle dependence of k̂1

|(M, l,
1
2
,
1
2
,
1
2
,
1
2

),0,ml,ms1c,mt1,ms2c,mt2⟩ :=∫
dk̂1|(m,

1
2
,
1
2

)k1,ms1c,mt1⟩ × |(m, 1
2
,
1
2

) − k1,ms2x,mt2⟩Y l
ml

(k̂1).

Because the spins are canonical this vector transforms covariantly under ordinary rotations

U(R)|(M, l,
1
2
,
1
2
,
1
2
,
1
2

)0,ml,ms1c,mt1.ms2c,mt2⟩ :=

∑
|(M, l,

1
2
,
1
2
,
1
2
,
1
2

),0,m′
l,m

′
s1c,mt1m

′
s2c,mt2⟩Dl

m′
lml

[R]D1/2
m′

sc1msc1
[R]D1/2

m′
sc2msc2

[R]. (37)

It follows that we can couple the spins and orbital angular momenta with ordinary Clebsch-

Gordan coefficients

|(M, j, l, s12,
1
2
,
1
2
,
1
2
,
1
2

)0,mj,mt1,mt2⟩ :=

8



∫
dk̂1|(m,

1
2
,
1
2

)k1,ms1c,mt1⟩ × |(m, 1
2
,
1
2

) − k1,ms2x,mt2⟩×

Y l
ml

(k̂1)C(s12,
1
2
,
1
2

;msc12,msc1,msc2)C(j, l, s12;mj,ml,msc12). (38)

Now we return to the case of a spin associated with a general boost, Bx(p). We use Melosh

rotations to express the single particle canonical spins in terms of the x spins

|(M, j, l, s12,
1
2
,
1
2
,
1
2
,
1
2

)0,mj,mt1,mt2⟩ :=

∑∫
dk̂1|(m,

1
2
,
1
2

)k1,ms1x,mt1⟩ × |(m, 1
2
,
1
2

) − k1,ms2x,mt2⟩×

D1/2
ms1xms1c [B

−1
x (k1/m)Bc(k1/m)]D1/2

ms2xms2c [B
−1
x (k2/m)Bc(k2/m)]Y l

ml
(k̂1)×

C(s12,
1
2
,
1
2

;msc12,msc1,msc2)C(j, l, s12;mj,ml,msc12). (39)

Finally we boost both sides with Bx(P/M0) to get an irreducible state with an x-spin. On

the left side of (39), since it is a rest state we get the x boost will leave the total x-spin

unchanged

|(M, j, l, s12,
1
2
,
1
2
,
1
2
,
1
2

)P,mj,mt1,mt2⟩
√
ωM(P )
M

. (40)

The square root factors ensure unitarity. On the right hand side of (39) ki is the momentum

of particle i in the non-interacting two nucleon rest frame. The boost Bx(P/M0) acts on

each of the ki and boosts them to the single particle momenta pi and causes the spins to

Wigner rotate

|(M, j, l, s12,
1
2
,
1
2
,
1
2
,
1
2

)P,mj,mt1,mt2⟩
√
ωM(P )
M

=∑∫
dp̂1|(m,

1
2
,
1
2

)k1,ms1x,mt1⟩ × |(m, 1
2
,
1
2

) − k2,ms2x,mt2⟩×

D1/2
ms1xms1x′

[B−1
x (p1/m)Bx(P/M)Bx(k1/m)]D1/2

ms2xms2x′
[B−1

x (p2/m)Bx(P/M)Bx(k2/m)]×√
ωm1(p1)ωm2(p2)
ωm1(k1)ωm2(k2)

D1/2
ms1x′ms1c [B

−1
x (k1/m)Bc(k1/m)]D1/2

ms2x′ms2c [B
−1
x (k2/m)Bc(k2/m)]×

Y l
ml

(k̂1)C(s12,
1
2
,
1
2

;msc12,msc1,msc2)C(j, l, s12;mj,ml,msc12) (41)

In this expression there are both Wigner and Melosh rotations. If the spin is canonical

the Melosh rotations are replaced by the identity, while if Bx(B) is a light-front preserving

boost, there are no Wigner rotations (because the light front boosts form a subgroup). The
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variables pi represent the momentum of each particle in the two-particle rest frame. Since

they are eigenvalues of the operator

ki = Λ(B−1
x (P/M0))pi (42)

they are related to pi by the x-boost. The spins on the right side of (41) are the ones that

couple to currents, while the state on the left transforms irreducibly. Also note

M0 =
√
m2

1 + k2
1 +

√
m2

2 + k2
1 (43)

This basis is the relativistic version of the two-body partial wave basis.

It is useful to replace the general form by the instant and light front forms

Instant form partial wave basis in terms of instant form tensor product basis:

|(M, j, l, s12,
1
2
,
1
2
,
1
2
,
1
2

)P,mj,mt1,mt2⟩ =∑∫
dk̂1|(m,

1
2
,
1
2

)p1,ms1c,mt1⟩ × |(m, 1
2
,
1
2

) − p1,ms2c,mt2⟩×

D1/2
ms1cms1c′

[B−1
c (p1/m)Bc(P/M)Bc(k1/m)]×

D1/2
ms2cms2c′

[B−1
c (p2/m)Bc(P/M)Bc(k2/m)]×

Y l
ml

(k̂1)C(s12,
1
2
,
1
2

;msc12,msc1,msc2)C(j, l, s12;mj,ml,msc12)×√
ωm1(p1)ωm2(p2)M0

ωm1(k1)ωm2(k2)ωM0(P)

(44a)

(44b)

(44c)

(44d)

(44e)

(44f)

Front form partial wave basis in terms of instant form tensor product basis:

|(M, j, l, s12,
1
2
,
1
2
,
1
2
,
1
2

)P+,P⊥,mj,mt1,mt2⟩ =∑∫
dk̂1|(m,

1
2
,
1
2

)p+
1 ,p1⊥,ms1f ,mt1⟩ × |(m, 1

2
,
1
2

)p+
2 ,p2⊥,ms2f ,mt2⟩×

D1/2
ms1fms1c [B

−1
f (k1/m)Bc(k1/m)]D1/2

ms2fms2c [B
−1
f (k2/m)Bc(k2/m)]

Y l
ml

(k̂1) × C(s12,
1
2
,
1
2

;msc12,msc1,msc2)C(j, l, s12;mj,ml,msc12)√
p+

1 p
+
2

ωm1(k1)ωm2(k2)

√
M0

P+

(45a)

(45b)

(45c)

(45d)

(45e)

Normally calculations are performed in the partial wave basis

|(M, j, l, s12,
1
2
,
1
2
,
1
2
,
1
2

)P,mj,mt1,mt2⟩ (46)
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or in the light front case

|(M, j, l, s12,
1
2
,
1
2
,
1
2
,
1
2

)P+,P⊥,mj,mt1,mt2⟩ (47)

The internal variables in both of these bases are spectrally equivalent, the differences being

in the treatment of the total momentum and total spin.

From these expressions we can read off the overlap coefficients

⟨(m, 1
2
,
1
2

)p1,ms1c,mt1; (m, 1
2
,
1
2

) − p1,ms2c,mt2|(M, j, l, s12,
1
2
,
1
2
,
1
2
,
1
2

)P,mj,mt1,mt2⟩ =

∑
δ(P − p1 − p2)

δ(k − k(p1p2))
k2

1

√
ωm1(k1)ωm2(k2)
ωm1(p1)ωm2(p2)

√
ωM0(P)
M0

×

D1/2
ms1cms1c′

[B−1
c (p1/m)Bc(P/M)Bc(k1/m)]D1/2

ms2cms2c′
[B−1

c (p2/m)Bc(P/M)Bc(k2/m)]×

Y l
ml

(k̂1)C(s12,
1
2
,
1
2

;msc12,msc1,msc2)C(j, l, s12;mj,ml,msc12)

(48a)

(48b)

(48c)

(48d)
and for the light front case
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⟨(m, 1
2
,
1
2

)p+
1 ,p1⊥,ms1f ,mt1; (m, 1

2
,
1
2

)p+
2 ,p2⊥,ms2f ,mt2|(M, j, l, s12,

1
2
,
1
2
,
1
2
,
1
2

)P+,P⊥,mj,mt1,mt2⟩ =

δ(P+ − p+
1 − p+

2 )δ2(P⊥ − p1⊥ − p2⊥)δ(k − k(p1p2))
k2

1

√
ωm1(k1)ωm2(k2)

p+
1 p

+
2

√
P+

M0
×

D1/2
ms1fms1c [B

−1
f (k1/m)Bc(k1/m)]D1/2

ms2fms2c [B
−1
f (k2/m)Bc(k2/m)]Y l

ml
(k̂1)×

C(s12,
1
2
,
1
2

;msc12,msc1,msc2)C(j, l, s12;mj,ml,msc12)

(49a)

(49b)

(49c)

(49d)

(49e)

III. DYNAMICS AND THE DEUTERON

In this section I discuss how non-relativistic interactions fit to data can be reinterpreted

as relativistic interactions. This avoids any need to refit the parameters of the interaction.

For a relativistic treatment of the Deuteron let V be any realistic non-relativistic nucleon-

nucleon interaction that gives the correct Deuteron binding energy and experimental phase

shifts as a function of the center of mass momentum of one particle when used in the non-

relativistic Schrödinger equations.

h|ψ⟩ = ( k2

2µ
+ V )|ψ⟩ = e|ψ⟩ (50)

where

ki = pi−miP/M = (Mpi−mi(pi + pj))/M = (mjpi−mipj)/M M = m1 +m2. (51)
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is the momentum of particle 1 boosted to the two body rest frame with a Galilean boost.

µ = m1m2/(m1 +m2) is the non-relativistic reduced mass of the two-body system, and

h = H − P2

2M
(52)

is the Hamiltonian in the 2 body rest frame.

Note that the experimental data that determines V is measured experimentally - it is not

“non relativistic”.

Define the interacting mass operator for the two nucleon system:

M :=
√
m2

1 + k2
1 + 2µV +

√
m2

2 + k2
2 + 2µV (53)

where ki is the relativistic ki which replaces the non-relativistic ki in the expression for

the potential. This operator is a function of the non-relativistic Hamiltonian. This means

that the wave functions and phase shifts, as a function of ki, are identical to the non-

relativistic quantities. The only caveat here is that we have to identify the operator defined

by boosting the momentum of one particle to the rest frame with a Lorentz transformation

with the operator defined by boosting the momentum of one-particle to the rest frame with

a Galilean boost. This assumes that the cross sections are measured as a function of these

variables .

Note that most experimentalists use relativistic kinematics when they measure cross

sections.

Thus it is not necessary to diagonalize M directly. We can check that M gives the correct

Deuteron binding energy up to a small correction:

M =
√
m2

1 + 2µh+
√
m2

2 + 2µh→
√
m2

1 − 2µϵ+
√
m2

2 − 2µϵ = m1

√
1 − 2µϵ/m2

1+m2

√
1 − 2µϵ/m2

2 ≈

m1 +m2 −
m2

(m1 +m2)
ϵ− m1

(m1 +m2)
ϵ+ m2

2ϵ
2

m1(m1 +m2)2 + m2
1ϵ

2

m2(m1 +m2)2 + · · · =

m1 +m2 − ϵ+ ϵ
ϵ

2(m1 +m2)
( m2

2
(m1 +m2)m1

+ m2
1

(m1 +m2)m2
) + · · · (54)

This gives the observed binding energy up to corrections that are about (1/2000)ϵ (about 1

KeV).

While the phase shifts can be directly read off of the wave functions, the result can also

be obtained using the invariance principle

S = lim
t→∞

eiHr0te−2iHrteiHr0t = lim
t→∞

eiMr0te−2iMrteiMr0t =

13



lim
t→∞

eihnr0te−2ihnrteihnr0t = lim
t→∞

eiHnr0te−2iHnrteiHnr0t = e2iδ (55)

where

h = k2
i

2µ
+ V H = P2

2M
+ h (56)

which shows that the relativistic and non-relativistic scattering operators exactly reproduce

the measured scattering data as a function of ki. This means that there is no need to refit

data, standard potentials can be used directly. Note that the non-relativistic limit of the

relativistic calculation is not the same as the non-relativistic calculation - that because the

non-relativistic calculation is not fit to the non relativistic limit of the data; it is fit to the

same data as the relativistic model.

The non-relativistic calculations of transition operators can be used to calculate on shell,

half shell and fully on shell relativistic transition matrix elements. For the (right) half

shell transition matrix elements we use the fact that the scattering wave functions in the

relativistic and non-relativistic cases are identical:

⟨kf∥Tn∥ki⟩ = ⟨kf∥Vn∥k−
i ⟩ = ⟨kf |Hn −H0n|k−

i ⟩ =

⟨kf |(
k2
i − k2

f

2µ
)|k−

i ⟩

⟨kf |(
k2
i − k2

f

2µ
)(ω1(ki) + ω2(ki) − ω1(kf ) − ω2(kf ))
ω1(ki) + ω2(ki) − ω1(kf ) − ω2(kf )

|k−
i ⟩ =

(k2
i − k2

f )
2µ(ω1(ki) + ω2(ki) − ω1(kf ) − ω2(kf )

⟨kf |((ω1(ki) + ω2(ki) − ω1(kf ) − ω2(kf )|k−
i ⟩ =

=
(k2

i − k2
f )

2µ(ω1(ki) + ω2(ki) − ω1(kf ) − ω2(kf ))
⟨kf |(Mr −M0)|k−

i ⟩ =

(p2
i − k2

f )
2µ(ω1(ki) + ω2(ki) − ω1(kf ) − ω2(kf ))

⟨kf∥Tr∥ki⟩ (57)

In these expressions an overall 3-momentum conserving delta function has been factored

out:

⟨P′,k′|T |P,k⟩ = δ(P′ − P)⟨k′∥T∥k⟩ (58)

The singular parts of the coefficient in front cancel:

=
(k2

i − k2
f )

2µ(ω1(ki) + ω2(ki) − ω1(kf ) − ω2(kf ))
=

14



(k2
i − k2

f )
2µ(ω1(ki) − ω1(kf ) + ω2(ki) − ω2(kf ))
(k2

i − k2
f )

2µ
1

(k2
i−k2

f )
ω1(ki)+ω1(kf ) + (k2

i−k2
f )

ω2(ki)+ω2(kf )

=

1
2µ

(ω1(ki) + ω1(kf ))(ω2(ki) + ω2(kf ))
ω1(ki) + ω1(kf ) + ω2(ki) + ω2(kf )

(59)

Thus

2µ⟨kf∥Tn∥ki⟩ = (ω1(ki) + ω1(kf ))(ω2(ki) + ω2(kf ))
ω1(ki) + ω1(kf ) + ω2(ki) + ω2(kf )

⟨kf∥Tr∥ki⟩. (60)

or

⟨kf∥Tr∥ki⟩ = 2µ ω1(ki) + ω1(kf ) + ω2(ki) + ω2(kf )
(ω1(ki) + ω1(kf ))(ω2(ki) + ω2(kf ))

⟨kf∥Tn∥ki⟩ (61)

This result is valid for either the right or left half shell transition matrix elements. If we

evaluate these on shell |ki| = |kf | this becomes

2µ⟨kf∥Tn∥ki⟩ = 2 ω1(ki)ω2(kf ))
ω2(ki) + ω2(ki)

⟨kf∥Tr∥ki⟩ (62)

or

⟨kf∥Tr∥ki⟩ = µ
ω2(ki) + ω2(ki)
ω1(ki)ω2(kf ))

⟨kf∥Tn∥ki⟩ (63)

Note that the relation between the scattering operator and the transition operators in the

relativistic and non-relativistic cases are (spin and isospin degrees suppressed)

⟨Pf ,kf |Sr|Pi,ki⟩ = δ(Pf − Pi)(I − 2πiδ(mi −mf )⟨kf∥Tr(m+ iϵ)∥ki⟩ (64)

Tr := Vr + Vr
1

m−M + iϵ
Vv (65)

⟨Pf ,kf |Sn|Pi,ki⟩ = δ(Pf − Pi)(I − 2πiδ(hi − hf )⟨kf∥Tn(h+ iϵ)∥ki⟩ (66)

Tn := Vn + Vn
1

h− ĥ+ iϵ
Vn. (67)

The corresponding expressions for the differential cross sections are

dσr = (2π)4

|vr|
|⟨kf∥Tr(m+ iϵ)∥ki⟩|2δ(m−m′)k2

f

dkf
dm

dΩ(k̂f ) (68)

Vr = M −M0 (69)
1
vr

= 1
|ki/ω1(ki) + i/ω2(ki)|

= ω1(ki)ω2(ki)
|ki|(ω1(ki) + ω1(ki)

(70)
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above are initial; below are final

|kf |2
dm

dk1
= |kf |2

ω1(kf )ω2(kf )
k1(ω1(kf ) + ω2(kf ))

= k1
ω1(kf )ω2(kf )

(ω1(kf ) + ω2(kf ))
(71)

combining with the velocity factor

dσ = 4π2 ω1(ki)ω2(ki)
|ki|(ω1(ki) + ω1(ki)

|kf |
ω1(kf )ω2(kf )

(ω1(kf ) + ω2(kf ))
|⟨kf∥Tr(m+ iϵ)∥ki⟩|2dΩ(k̂f ) (72)

for elastic scattering

dσ =
(

4π2 ω1(k)ω2(k)
(ω1(k) + ω1(k)

)2

|⟨kf∥Tr(m+ iϵ)∥ki⟩|2dΩ(k̂f ) (73)

In the non-relativistic case the corresponding formula is

dσ = (2π)4

|ki|/m1 + |ki|/m2
|⟨kf∥Tn(h+ iϵ)∥ki⟩|2|kf |2

µ

|kf |
dΩ(k̂f ) =

(4π2µ)2| |kf |
|ki|

||⟨kf∥Tn(h+ iϵ)∥ki⟩|2dΩ(k̂f ) =(
4π2 ω1(k)ω2(k)

(ω1(k) + ω2(k)

)2

|⟨kf∥Tr(m+ iϵ)∥ki⟩|2dΩ(k̂f )

(74a)

(74b)

(74c)

which is identical to the relativistic expression, where we have used the on shell identity

(62). This is no surprise, since we have already established that the on shell relativistic

and non-relativistic cross sections are identical (this is equivalent to the wave functions and

phase shifts being the same). This means that for two-particle physics you can use most of

the non-relativistic results unchanged.

Remark - while it is a simple matter to multiply by the appropriate function of the

momentum to express the relativistic half-shell transition matrix elements in terms of the

non-relativistic half shell transition matrix elements, it is also possible to calculate the fully

off shell one in terms of the non-relativistic fully off shell transition matrix elements. This

is relevant for three-body scattering. To do this note

1
z1 −M

= 1
z2 −M

+ 1
z2 −M

(z2 − z1)
1

z1 −M
(75)

which implies

T (z1) = T (z2) + V
1

z2 −M
(z2 − z1)

1
z1 −M

V. (76)

This is equivalent to

T (z1) = T (z2) + T (z2)
1

z1 −M0
(z2 − z1)

1
z2 −M0

T (z1). (77)
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Given T (z2) on the left half shell (obtained from the non-relativistic T (z2), this equation

can be used to shift the energy denominator to T (z1) is fully off shell.

⟨k2∥T (z1)∥k⟩ = ⟨k2∥T (z2)∥k⟩ +
∫

⟨k2∥T (z2)∥k′′⟩ 1
z1 −M ′′

0
(z2 − z1)

1
z2 −M ′′

0
dk′′⟨k′′∥T (z1)∥k⟩

(78)

This requires half-shell input for all energies in the mesh, which means the equation has

to be solved for each half shell momentum in the integration grid. Note that this equation

has 2 integrable singularities, but because we are only interested in z1 ̸= z2 they are at

different places. The point is that it is possible to use non-relativistic half-shell matrices to

calculate the fully off-shell relativistic T matrix. You never have to deal with the relativistic

interaction that contains the square roots of the nucleon-nucleon potential.

The differences between the relativistic and non-relativistic theory arises when the partial

wave basis is converted to a tensor product of single particle bases. This is important for

scattering experiments involving electroweak probes.

Note that since V commutes with j, the internal 2-body free total angular momentum,

by simultaneously diagonalizing M,P, j2, jzc or M,P+,P⊥, j
2, jzf the resulting eigenstates

transform irreducibly under the Poincaré group. The dynamical unitary representation of

the Lorentz group becomes

U(Λ)|(Mn, j, I)P,mj,mt⟩ =∑
|(Mn, j, I))ΛΛΛ(Λ)P ),m′

j,mt⟩

√
ωm(ΛΛΛ(Λ)P
ωMn(P)

D
1/2
m′

simsi
[B−1

x (Λ(Λ)P/Mn)ΛBx(P/Mn)].

(79a)

(79b)

This is different than the free tensor product representation because the dynamical mass

eigenvalues, Mn, appear in the coefficients of the transformation.

What is needed to compute current matrix elements are scattering wave functions. Be-

cause the relativistic mass operator is a function of the non-relativistic center of mass Hamil-

tonian, the scattering wave functions are identical to the non-relativistic wave functions.
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IV. SPINOR REPRESENTATIONS OF LORENTZ TRANSFORMATIONS:

Four vectors can be represented by 2× 2 Hermitian matrices using the Pauli matrices as

a basis for Hermitian matrices (with real coefficients):

X := xµσµ =

 x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

 xµ = 1
2

Tr(Xσµ) (80)

where

σµ := (I,σσσ) Tr(σµσν) = 2δµν σµ = σ†
µ (81)

are the 2 × 2 identity and the traceless Hermitian Pauli matrices. Note that

det(X) = (x0)2 − (x )2 = x2. (82)

is the Lorentz invariant proper time squared.

This means that any transformation that preserves both the determinant and Hermiticity

of X is a 2× 2 spinor representation of a real Lorentz transformation. The determinant and

Hermiticity will be preserved if

X ′ = ΛXΛ† (83)

where Λ is a complex 2 × 2 matrix (SL(2, C)) satisfying

det(Λ) = 1. (84)

It can be shown that all Lorentz transformations continuously connected to the identity can

be put in this form. For the discrete transformations space-time reflection are given by

X → X ′ = −X (85)

while space reflections involve a complex conjugation

X ′ = σ2X
∗σ2 =

 x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

 . (86)

The discrete Lorentz transformations are not considered relativistic symmetries because

they are broken by the weak interaction, however space reflections are relevant in neutrino

physics.
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The most general 2 × 2 matrix with determinant 1 can be expressed as

Λ = e
z·σσσ

2 (87)

where z is a complex 3-vector. The factor of 1/2 is included for later convenience. The

matrix Λ has a polar decomposition as a product of a positive Hermitian matrix P times a

unitary matrix R:

Λ = (ΛΛ†Λ)1/2︸ ︷︷ ︸
P

(ΛΛ†)−1/2Λ︸ ︷︷ ︸
R

= PR (88)

The positive Hermitian matrix,

P = P † > 0, (89)

corresponds to a rotationless (canonical) boost and has the general form

P = e
ρρρ·σσσ

2 = σ0 cosh(ρ
2

) + ρ̂ρρ · σσσ sinh(ρ
2

) ρρρ = rapidity (90)

while the unitary matrix R is a SU(2) matrix

RR† = (ΛΛ†)−1/2(ΛΛ†)(ΛΛ†)−1/2 = I (91)

that can be expressed in the familiar form

R = ei
θθθ·σσσ

2 = σ0 cos(θ
2

) + iθ̂θθ · σσσ sin(θ
2

). (92)

Note that from the definition of rapidity it follows that

P 2 = P †P = PP † = eρρρ·σσσ = σ0 cosh(ρ) + ρ̂ρρ · σσσ sinh(ρ) = σ0
p0

m
+ p
m

· σσσ = p

m
· σ (93)

which we will use later. Because of the relation to p in (93) we use the notation

P = P (p). (94)

Equation (88) means that any Lorentz transformation continuously connected to the identity

can be factored into a rotation R followed by a rotationless Lorentz transformation P (p).

Since a rotation does not change a rest 4-vector, the final momentum is determined by the

positive matrix P (p). This means the we can express a general boost B(p) as

B(p) = P (p)R(p), (95)
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with the property

B(p)B†(p) = P (p)R(p)R†P (p) = P 2(p) = σ0
p0

m
+ p
m

· σσσ = p

m
· σ (96)

which is independent of the type of boost.

It follows from the general representation

Λ = e
z·σσσ

2 z = complex vector (97)

that

Λ̃ = (Λ†)−1 = σ2Λ∗σ2. (98)

The related notation

σ̃µ := σ2σ
∗
µσ2 = (σ0,−σσσ) (99)

will also be used. The definitions imply following identities that will be used in what follows

(Λ̃)† = Λ−1 (Λ̃)−1 = Λ†. (100)

Equations (80) and (83) imply that

X ′ = xµ′σµ = Λµ
νx

νσµ = ΛXΛ† = ΛσνxνΛ†. (101)

Equating the coefficients of xν gives the following transformation properties of the matrices

σµ under Lorentz transformations

ΛσνΛ† = σµΛµ
ν Λµ

ν = 1
2

Tr(σµΛσνΛ†). (102)

Note when there is no obvious ambiguity we will use Λ to represent both the 2× 2 SL(2, C)

matrix and 4 × 4 Lorentz transformation related by (102).

If we take complex conjugates and multiply both sides of (102) by σ2 on the right and

left we get

Λ̃σ2σ
∗
νσ2Λ̃† = σ2σ

∗
µσ2Λµ

ν (103)

or equivalently

Λ̃σ̃νΛ̃† = σ̃µΛµ
ν (104)

which gives the correct transformation for a space reflected four vector.
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V. THE EQUIVALENCE OF TWO AND FOUR COMPONENT SPINORS

Recall the relation between the 2×2 and 4×4 representation of Lorentz transformations

Λµ
ν := 1

2
Tr(σµΛσνΛ†). (105)

Since the 4 × 4 Lorentz matrix, Λµ
ν , is real, taking complex conjugate of (105) gives

Λµ
ν := Λµ∗

ν = 1
2

Tr(σ∗
µΛ∗σ∗

νΛ†∗) (106)

Since Tr(AB) = Tr(BA) (106) can be replaced by

Λµ
ν := 1

2
Tr(σ2σ

∗
µσ2σ2Λ∗σ2σ2σ

∗
νσ2Λ†∗σ2) = 1

2
Tr(σ̃µ(Λ−1)†σ̃νΛ−1). (107)

The relevant observation is both the right and left handed (space reflected) representations

give the same Lorentz transformation.

To understand the equivalence of Poincaré covariant representations and Lorentz covari-

ant representations consider the unitary representation of the Poincaré group acting on

simultaneous eigenstates of mass, spin, linear momentum, and spin projection with a delta

function normalization,

⟨(m, j)p, µ|(m′, j′)p′, µ′⟩ = δ(p − p′)δµµ′δjj′δmm′ ,

U(Λ)|(m, j)p, µ⟩ =
∑
ν

|Λ(m, j)p, ν⟩

√
(Λp)0

p0 isDj
νµ[B−1(Λp)ΛB(p)] =

∑
ν

|(m, j)Λp, ν⟩

√
(Λp)0

p0 Dj
νµ[B†(Λp)(Λ†)−1(B†)−1(p)] (108)

where we used R = (R†)−1 in the Wigner rotation in the second line of (108). Here B(p) =

P (p)R(p) represents a general choice of SL(2, C) boost.

The Wigner functions,

Dj
µ,µ′ [R] = ⟨s, µ|U [R]|j, µ′⟩ =

j+µ∑
k=0

√
(j + µ)!(j + µ′)!(j − µ)!(j − µ′)!

k!(j + µ′ − k)!(j + µ− k)!(k − µ− µ′)!
Rk

++R
j+µ′−k
+− Rj+µ−k

−+ Rk−µ−µ′

−− (109)

where

R =

 R++ R+−

R−+ R−−

 = e
i
2θθθ·σσσ = σ0 cos(θ

2
) + iθ̂θθ · σσσ sin(θ

2
) (110)
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are degree 2j polynomials with real coefficients in the SU(2) matrix elements Rij which are

entire functions of angles. This means that the group representation property and angular

momentum addition laws can be analytically continued to complex angles (i.e. rapidities).

The means that the group representation property and angular momentum addition laws∑
µ′′

Dj
µ,µ′′ [R2]Dj

µ′′,µ′ [R1] −Dj
µ,µ′ [R2R1] = 0, (111)

Dj
µ,µ′ [R] −

∑
j1j2µ1µ2µ′

1µ
′
2

⟨j, µ|j1, µ1, j2, µ2⟩Dj1
µ1,µ′

1
[R]Dj2

µ2,µ′
2
[R]⟨s1, µ

′
1, s

′
2, µ

′
2|j, µ′⟩ = 0 (112)

Dj1
µ1,µ′

1
[R]Dj2

µ2,µ′
2
[R] −

∑
jµµ′

⟨j1, µ1, j2, µ2|j, µ⟩Dj
µ,µ′ [R]⟨j, µ′|j1, µ

′
1, j2, µ

′
2⟩ = 0, (113)

are also valid for SL(2, C) matrices, i.e. R → Λ. Using the group representation properties

the Wigner rotations can be decomposed into products of D-functions of SL(2, C) matrices

and the boosts can be absorbed in the definitions of the states, resulting in new states that

transform covariantly under SL(2, C):

U(Λ)
∑
ν

|(m, j)p, ν⟩
√
p0Dj

νµ[B−1(p)]︸ ︷︷ ︸
|(m,j)p,µ⟩lc

=
∑
ρ

∑
ν

|(m, j)Λp, ν⟩
√

(Λp)0Dj
νρ[B−1(Λp)]︸ ︷︷ ︸

|(m,j)Λp,ρ⟩lc

Dj
ρµ[Λ]

(114)

U(Λ)
∑
ν

|(m, j)p, ν⟩
√
p0Dj

νµ[B†(p)]︸ ︷︷ ︸
|(m,j)p,µ⟩lc∗

=
∑
ρ

∑
ν

|Λp, ν⟩
√

(Λp)0Dj
νρ[B†(Λp)︸ ︷︷ ︸

|(m,j)Λp,ρ⟩lc∗

Dj
ρµ[(Λ̃] (115)

where the lc subscript indicates that the states are Lorentz covariant.

The transformations relating |(m, j)p, ν⟩, |(m, j)p, ν⟩lc, and |(m, j)p, ν⟩lc∗ are all invert-

ible, so they are all equivalent ways of representing relativistic states. The differences are

in the representations of Lorentz transformations

U(Λ)|(m, j)p, µ⟩lc =
∑
ν

|(m, j)p, ν⟩lcDj
νµ[Λ] (116)

U(Λ)|(m, j)p, µ⟩lc∗ =
∑
ν

|(m, j)p, ν⟩lc∗Dj
νµ[Λ̃] (117)

While it is known there are no finite dimensional unitary representations of the Lorentz

group, this in not a contradiction because the Hilbert space inner product has a non-trivial

momentum-dependent kernel. This can be seen by expressing the identity in terms of co-

variant states:

I =
∑
µ

∫
|(m, j)p, µ⟩dp⟨(m, j)p, µ| =
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∑
µν

∫
|(m, j)p, µ⟩lc

dp
p0 D

j
µν [B(p)B†(p)]lc⟨(m, j)p, ν| =

∑
µν

∫
|(m, j)p, µ⟩lc2d4pδ(p2 −m2)θ(p0)Dj

µν [σ · p]lc⟨(m, j)p, ν| =

∑
µν

∫
|(m, j)p, µ⟩lc∗2d4pδ(p2 −m2)θ(p0)Dj

µν [σ̃ · p]lc∗⟨(m, j)p, ν| (118)

where we have used (96). The problem is that while R = (R†)−1 for SU(2) matrices, this is

not true for SL(2, C) matrices. In fact there is no constant similarity transformations that

relates the two representations. They are called inequivalent representations. Equation (86)

implies that the two representations are related by space reflection. What this means that

is that the space reflected states will not transform correctly under Lorentz transformations

in these representations.

One way to construct Lorentz covariant vectors that transform linearly with respect to

space reflection is to replace (116) and (117) by the 4j + 2 component spinor states

|(m, j)p, α⟩cov =
√
p0

∑ν |(m, j)p, ν⟩Dj
να[B−1(p)]∑

ν |(m, j)p, ν⟩Dj
να[B†(p)]

 . (119)

This is a 2j + 1 × 2(2j + 1) matrix in spin degrees of freedom. α takes on 2(2j + 1) values;

corresponding to the rows of this rectangular matrix. α± is used to denote the first (+) or

last (−) 2j + 1 components of α. The transformation properties are

U(Λ)
√
p0

∑µ |(m, j)p, µ⟩Dj
µα+ [B−1(p)]∑

µ |(m, j)p, µ⟩Dj
µα− [B†[(p)]

 =

√
(Λp)0

∑µ |(m, j)Λp, µ⟩D
j
µβ[B−1(Λp)]∑

µ |(m, j)Λp, µ⟩D
j
µβ[B†[Λp]

 Dj
βα+

[Λ] 0

0 Dj
βα−

[(Λ̃]

 . (120)

Note the following intertwining property

∑
ν

Dj
µν [Rw(Λ, p)]

∑ν D
j
µν [Rw(Λ, p)]Dj

νβ+
[B−1(p)]∑

ν D
j
µν [Rw(Λ, p)]Dj

νβ−
[B†[p]

 =

∑ν D
j
µν [B−1(Λp)ΛB(p)]Dj

νβ+
[B−1(p)]∑

ν D
j
µν [B−1(Λp)ΛB(p)]Dj

νβ−
[B†[p]

 =

∑ν D
j
µν [B−1(Λp)ΛB(p)]Dj

νβ+
[B−1(p)]∑

ν D
j
µν [B−1(Λp)ΛB(p)]Dj

νβ−
[B†[(p)]

 =
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 ∑
ν D

j
µν [B−1(Λp)ΛB(p)]Dj

νβ+
[B−1(p)]∑

ν D
j
µν [B†(Λp)(Λ−1)†(B−1)†(p)]Dj

νβ−
[B†(p)]

 =

∑
β

 Dj
µβ−

[B−1(Λp)]

Dj
µβ+

[B†[(Λp)]

 Dj
β+α+

[Λ] 0

0 Dj
β−α−

[Λ̃]

 . (121)

This shows that this combination of boosts maps Wigner rotations into representations of

SL(2, C).

This is for a general spin. For spin 1
2 the covariant basis states have the form

|(m, 1
2

)p, α⟩cov =
√
p0

 ∑
ν |(m,

1
2)p, ν, ⟩B−1(p)να+∑

ν |(m,
1
2)p, ν, ⟩(B̃−1(p)να−)

 (122)

and the representation of the unitary representation of the Lorentz group is D
1/2
β+α+

[Λ] 0

0 D
1/2
β−α−

[Λ̃]

 =

 Λ 0

0 Λ̃

 =: S(Λ) (123)

This defines the 4 × 4 spinor representation of the Lorentz group.

U(Λ)|(m, 1
2

)p, α⟩cov =
∑
β

√
(Λp)0

 ∑
ν |(m,

1
2)Λp, ν⟩B−1(Λp)∑

ν |(m,
1
2)Λp, ν⟩(B̃−1(Λp))


νβ

 Λ 0

0 Λ̃


βα

(124)

We remark that these 2 × 4 matrices transform Wigner rotations to representations of the

SL(2, C) group. The key observation is that the doubled 2 and four component representa-

tion are equivalent; it is possible to transform back and forth between them. The pronlem

is that a consistent treatment of space reflection in the covariant representations requires

having both a right and left (space reflected) representation.

We also remark that the kernels in the covariant representations are up to normalization

and change of representation the 2-point Wightman functions of a free field theory.

VI. GAMMA MATRICES FROM SL(2,C)

We define the 4 × 4 representation of SL(2, C) as the direct sum of the right and left

handed representations:

S(Λ) =

 Λ 0

0 Λ̃

 (125)
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It follows from equations (102) and (104) that

S(Λ)

 0 σµ

σ̃µ 0

S(Λ)−1 =

 Λ 0

0 Λ̃

 0 σµ

σ̃µ 0

 Λ−1 0

0 Λ̃−1

 =

 0 ΛσµΛ†

Λ̃σ̃µΛ̃† 0

 =
∑
ν

 0 σν

σ̃µ 0

Λν
µ (126)

This suggests the definition

γµ :=

 0 σµ

σ̃µ 0

 γµ :=

 0 σ̃µ

σµ 0

 (127)

We also define

γ5 = iγ0γ1γ2γ3 =

 I 0

0 −I

 (128)

With definition (127) equation (126) can be expressed as

S(Λ)γµS(Λ)−1 =
∑
ν

γνΛν
µ (129)

It also follows from the definition (127) that

{γµ, γν} = 2ηµν − iσ0i = 1
2

[γ0, γi] =

 σi 0

0 −σi

 σij = i

2
[γi, γj] = ϵijk

 σk 0

0 σk


(130)

VII. DIRAC SPINORS

Consider the 2 × 4 matrices

u(p)µ,α := 1√
2

 B(p)µα+

B̃(p)µα−

 = S(B(p)) 1√
2

 σ0

σ0

 (131)

and

v(p)µ,α := 1√
2

 B(p)µα+

−B̃(p)µα−

 = S(B(p)) 1√
2

 σ0

−σ0

 (132)
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Note that

(pµγµ −m)u(p) = (pµγµ −m)S(B(p))u(0) = S(B(p))S−1(B(p))(pµγµ −m)S(B(p))u(0) =

S(B(p))(pµS−1(B(p))γµS(B(p)) −m)u(0) = S(B(p))(pµγνB−1(p)νµ −m)u(0) =

S(B(p))(B−1(p)νµpµγν −m)u(0) = S(B(p))(mγ0 −m)u(0) = 0 (133)

which is the Dirac equation:

(pµγµ −m)u(p) = 0. (134)

Similarly

(pµγµ +m)v(p) = (pµγµ +m)S(B(p))v(0) = S(B(p))S−1(B(p))(pµγµ +m)S(B(p))v(0) =

S(B(p))(pµS−1(B(p))γµS(B(p)) +m)v(0) = S(B(p))(pµγνB−1(p)νµ +m)v(0) =

S(B(p))(B−1(p)νµpµγν +m)v(0) = S(B(p))(mγ0 +m)v(0) = 0 (135)

which gives

(pµγµ +m)v(p) = 0. (136)

Given these definitions define u†(p)αµ, ū(p)α,µ, v†(p)αµ and v̄(p)α,µ by

u†(p)αµ := 1√
2

(
(B†(p), B̃†(p)

)
, (137)

ū(p)αµ := 1√
2

(
B̃†(p), B†(p)

)
= 1√

2

(
B−1(p), B̃−1(p)

)
(138)

v†(p)αµ := 1√
2

(
(B†(p), −B̃†(p)

)
(139)

and

v̄(p)αµ := 1√
2

(
−B̃†(p), B†(p)

)
= 1√

2

(
−B−1(p), B̃−1(p)

)
. (140)

If we multiply these together we get

ū(p)u(p) = σ0 (141)

v̄(p)v(p) = −σ0. (142)

The polar decomposition of B(p) and B†(p) gives

B(p) = P (p)R(p) (143)

26



B†(p) = R†(p)P (p) (144)

implies

B(p)B†(p) = P 2(p) = p · σ (145)

B̃(p)B̃†(p) = (B†(p))−1B−1(p) = p · σ̃ (146)

These properties can be used to compute

u(p)ū(p) = 1
2

 I B(p)B†(p)

B̃(p)B̃†(p) I

 = 1
2

 I p·σ
m

p·σ̃
m

I

 =

1
2m

(m+ pµγµ) (147)

v(p)v̄(p) = 1
2

 −I B(p)B†(p)

B̃(p)B̃†(p) −I

 = 1
2

 −I p·σ
m

p·σ̃
m

−I

 =

1
2m

(−m+ pµγµ) (148)

Using the polar decomposition and the property that for SU(2) that R = R̃ gives

u†(p)u(p) = 1
2

(B†(p)B(p) + (B̃†(p)B̃(p)) = 1
2

(R†B2
c (p)R + R̃†B̃2

c (p)R̃) =

1
2m

R†(σ · p+ σ̃ · p)R = p0

m
R†σ0R = p0

m
σ0 (149)

v†(p)v(p) = 1
2

(B†(p)B(p) + (−B̃†(p))(−B̃(p))) = 1
2

(R†B2
c (p)R + R̃†B̃2

c (p)R̃) =

1
2m

R†(σ · p+ σ̃ · p)R = p0

m
R†σ0R = p0

m
σ0 (150)

u(p)u†(p) = 1
2

 B(p)B†(p) B(p)B−1(p)

B̃(p)B†(p) B̃(p)(B̃†(p)

 =

 p·σ
2m I

I p·σ̃
2m

 = 1
2m

(m+ pµγµ)γ0 (151)

v(p)v†(p) = 1
2

 B(p)B†(p) −B(p)B−1(p)

−B̃(p)B†(p) B̃(p)(B̃†(p)

 = 1
2

 p·σ
m

−I

−I p·σ̃
m

 = 1
2m

(−m+ pµγµ)γ0

(152)

It is useful to summarize all of these properties

ū(p)u(p) = −v̄(p)v(p) = σ0 (153)

u†(p)u(p) = v†(p)v(p) = p0

m
σ0 (154)
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u(p)ū(p) = 1
2m

(m+ pµγµ) v(p)v̄(p) = 1
2m

(−m+ pµγµ) (155)

u(p)u†(p) = 1
2m

(m+ pµγµ)γ0 v(p)v†(p) = 1
2m

(−m+ pµγµ)γ0 (156)

It also follows that

ū(p)v(p) = v̄(p)u(p) = 0 (157)

Note that the rotation in the polar decomposition cancels out in all of these expressions. So

while the spinors depend on the choice of boost, the quantities with the gamma matrices do

not. The exception are the u(p) and v(p) spinors which are used to transform between the

representations.

The operators

u(p)ū(p) = 1
2m

(m+ pµσµ) − v(p)v̄(p) = 1
2m

(m− pµσµ) (158)

satisfy

u(p)ū(p) − v(p)v̄(p) = I4×4 (159)

(u(p)ū(p))2 = 1
4m2 (2m2 + 2mpµσµ) = u(p)ū(p) (160)

(−v(p)v̄(p))2 1
4m2 (2m2 − 2mpµσµ) = −v(p)v̄(p) (161)

are projection operators - although note that they are not Hermitian matrices.

A useful property of S(Λ) is

γ0S(Λ)γ0 =

 0 I

I 0

 Λ 0

0 Λ̃

 0 I

I 0

 =

 Λ̃ 0

0 Λ

 = (S(Λ)†)−1 (162)

or

γ0S−1(Λ)γ0 = S†(Λ) (163)

Here are some other spinor identities that are useful for dealing with current matrix elements

ū(p′)γµu(p) = ū(p′)γ
αp′α
m

γµ
γβpβ
m

u(p) = p′αpβ
m2 ū(p′)γαγµγβu(p) =

p′αpβ
2m2 ū(p′)(γαγµγβ + γαγµγβ)u(p) =

p′αpβ
4m2 ū(p′)(({γα, γµ} + [γα, γµ]γβ) + γα({γµ, γβ} + [γµ, γβ]))u(p) =

p′αpβ
4m2 ū(p′)((2ηαµ − 2iσαµ)γβ) + γα(2ηµβ − 2iσµβ))u(p) =
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1
2m2 ū(p′)((p′µpβγβ − ip′ασ

αµ)pβγβ) + p′αγ
α(pµ − ipβσ

µβ))u(p) =

1
2m

ū(p′)((p′µ − ip′ασ
αµ)) + (pµ − ipβσ

µβ))u(p) =

1
2m

ū(p′)((p′µ + pµ) + i(p′α − pα)σµα)u(p) (164)

where we used the Dirac equation, σµν = −σνµ and γ0γµ = (γµ)†γ0. The identity (164) is

called the Gordon identity, which gives the structure of current operators.

ū(p′)γµu(p) = 1
2m

ū(p′)((p′µ + pµ) + i(p′α − pα)σµα)u(p) (165)

Similarly

ū(p′)γµγ5u(p) = ū(p′)γ
αp′α
m

γµγ5γ
βpβ
m

u(p) = −p
′
αpβ
m2 ū(p′)γαγµγβγ5u(p) =

−p
′
αpβ

2m2 ū(p′)(γαγµγβ + γαγµγβ)γ5u(p) =

−p
′
αpβ

4m2 ū(p′)(({γα, γµ} + [γα, γµ]γβ) + γα({γµ, γβ} + [γµ, γβ]))γ5u(p) =

−p
′
αpβ

4m2 ū(p′)((2ηαµ − 2iσαµ)γβ) + γα(2ηµβ − 2iσµβ))γ5u(p) =

− 1
2m2 ū(p′)((p′µpβγβ − ip′ασ

αµ)pβγβ) + p′αγ
α(pµ − ipβσ

µβ))γ5u(p) =

− 1
2m

ū(p′)(−(p′µ − ip′ασ
αµ)) + (pµ − ipβσ

µβ))γ5u(p) =

1
2m

ū(p′)((p′µ − pµ) + i(−p′α + pα)σµα)γ5u(p)

1
2m

ū(p′)((p′µ − pµ) + i(p′α + pα)σµα)v(p) (166)

or

ū(p′)γµγ5u(p) = 1
2m

ū(p′)((p′µ − pµ) + i(p′α + pα)σµα)v(p) (167)

Since γ5u(p) = v(p) and ū(p)γ5 = v̄(p) we also have

ū(p′)γµγ5u(p) = ū(p′)γµv(p) = v̄(p′)γµu(p) (168)

ū(p′)γµγ5v(p) = ū(p′)γµu(p) = v̄(p′)γµv(p). (169)

We also note that the spinor Feynman propagator is

F (p) = pµγ
µ +m

p2 −m2 = i0+)
=
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pµγ
µ +m

(p0 −
√

p2 +m2 + i0+)(p0 +
√

p2 +m2 − i0+)
=

m√
m2 + p2

(
ū(p)u(p)

p0 − ωm(p) + i0+ + v̄(p)v(p)
p0 + ωm(p) − i0+

)
(170)

where we have substituted the residue for each of the poles. This is where the v spinors can

arise in the current. They arise when a charged particle couples to a time reversed Fermion

in flight (the so-called Z-graphs). The expression in terms of the spinors is consistent with

the normalizations used in this section.

VIII. GAMMA MATRIX CONVENTIONS - BJORKEN AND DRELL

In this section I discuss the relation of Bjorken and Drell conventions to the convention

used in the previous section. The starting point is the choice representation of the gamma

matrices. For Bjorken and Drell they are

γ0 :=

 I 0

0 −I

 γγγ :=

 0 σσσ

−σσσ 0

 γ5 :=

 0 I

I 0

 σµν = i

2
[γµ, γν ] (171)

These are compared to the conventions used in the previous section

γ0 :=

 0 I

I 0

 γγγ :=

 0 −σσσ

σσσ 0

 γ5 :=

 I 0

0 −I

 σµν = i

2
[γµ, γν ] (172)

For the lower indices the vector γγγ reverses sign in both expressions. These representations

are related the similarity transformation

W := 1√
2

 I I

I −I

 = W−1 (173)

1√
2

 I I

I −I

 0 I

I 0

 1√
2

 I I

I −I

 = 1
2

 I I

I −I

 I −I

I I

 =

 I 0

0 −I

 (174)

1√
2

 I I

I −I

 0 −σσσ

σσσ 0

 1√
2

 I I

I −I

 = 1
2

 I I

I −I

 −σσσ σσσ

σσσ σσσ

 =

 0 σσσ

−σσσ 0

 (175)

The starting point of the previous section from (126) is Λ 0

0 Λ̃

 0 σµ

σ2σ
∗
µσ2 0

 Λ−1 0

0 Λ̃−1

 =

 0 ΛσµΛ†

Λ̃σ2σ
∗
µσ2Λ̃† 0

 =

 0 σν

σ2σ
∗
νσ20

Λν
µ

(176)
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or

S(Λ)

 0 σµ

σ2σ
∗
µσ2 0

S−1(Λ) =

 σν 0

0 σ2σ
∗
νσ2

Λν
µ (177)

where recall

S(Λ) =

 Λ 0

0 Λ̃

 . (178)

The corresponding S(Λ) in the Bjorken and Drell representation is

SBD(Λ) = WS(Λ)W−1 =

 Λ 0

0 Λ̃

 = 1
2

 Λ + Λ̃ Λ − Λ̃

Λ − Λ̃ Λ + Λ̃

 (179)

The spinors in the BD representation are

ubd(p) = 1√
2
SBD(P (p))W

 σ0

σ0

 = SBD(P (p))

 σ0

0

 (180)

and

vBD = 1√
2
SBD(P (p))W

 σ0

−σ0

 = SBD(P (p))

 0

σ0

 (181)

In this case P̃ (p) = P−1(p) is the inverse of the canonical boost that is obtained by reversing

the sign of the three momentum. The matrix

γµ :=

 0 σν

σ2σ
∗
µσ20

 (182)

is consistent with my representation of γµ. Note the sign change when the spatial indices

are raised. It shows

S(Λ)γνS(Λ)−1 = γνΛν
µ (183)

or if we raise indices

S(Λ)γνS(Λ)−1 = γνΛµ
ν = Λµ

νγ
ν (184)

Multiplying by W on the left and right gives

SBD(Λ)γνBDSBD(Λ)−1 = γνBDΛµ
ν = Λµ

νγ
ν
BD (185)

This is a representation because it is related by a similarity transformation to a representa-

tion.

Some general comments:
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1. The explicit form of the u and v spinors depends on both the choice of boost B(p) and

the representation of S(Λ). Bjorken and Drell use a different representation of S(Λ) -

see next section. They also use the canonical boost B(p) = P (p) in the definition of

the u(p) and v(p) spinors. Light front spinors in either representation involve replacing

P (p) by a light-front preserving boost.

2. While the u(p) spinor relates the Poincaré covariant and Lorentz covariant represen-

tation of states the v(p) spinors appear in the expression for the Feynman propagator

and will contribute to exchange currents.

3. The expressions for the gamma matrices do not depend on the choice of boost. That

is because the rotations in the polar decomposition cancel in the equations (96).

IX. CURRENT MATRIX ELEMENTS

In a canonical field theory plane wave current matrix elements can be expressed in terms

of free Dirac field and creation and annihilation operators as:

⟨p′, ν ′|jµ(x)|p, ν⟩ = ⟨0|b(p′, ν ′)Ψ̄(x)γµΨ(x)b†(p, ν)|0⟩ = ei(p
′−p)x

(2π)3

√
m2

p0p′0
ū(p′, ν ′)γµu(p, ν)

(186)

Here we use Bjorken and Drell delta function normalization of states and their normalization

on the free fields -see BD 13.50 and 13.52. Matrix elements of the charge operator in plane

wave states are obtained by integrating matrix elements of the charge density over all space.

This gives matrix elements of the Noether charge in plane wave states:

⟨p′ν ′|
∫
dxj0(x, 0)|p, µ⟩ =

∫
e−i(p′−p)·x

(2π)3

√
m2

p0p′0
ū(p′, ν ′)γµu(p, µ) = m√

m2 + p2
u†(p, ν ′)γµu(p, ν)δ(p − p′) =

m√
m2 + p2

√
m2 + p2

m
σ0δ(p − p′) = δν′νδ(p − p′) = ⟨p′, ν ′|p, ν⟩ (187)
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which is what we expect for a point charge with charge e = 1. This shows that the one-body

current matrix elements

⟨p′, ν ′|jµ(x)|p, ν⟩ = ei(p
′−p)·x

(2π)3

√
m2

p0p′0
ū(p′, ν ′)γµu(p, µ) (188)

are consistent with the charge normalization.

The space integral over x leads to a momentum conserving delta function. This replaces

the factor ei(p′−p)·x

(2π)3 by a three-momentum conserving delta function.

Matrix elements of the 3-dimensional fourier transformation of the current operator

j̃µ(q, t) = 1
(2π)3

∫
e−iq·xjµ(x)dx (189)

on the 0 time surface are

⟨p′, ν ′|jµ(q, 0)|p, ν⟩δ(q + p − p′) = ū(p′, ν ′)γµu(p, µ)δ(q + p − p′) (190)

X. COVARIANT DECOMPOSTION

A basis for 4×4 matrices can be expressed in terms of gamma matrices. The independent

matrices are

{I, γµ, σµν , γ5, γ5γµ} (191)

It follows that 4 × 4 matrix can be represented as

M = aI + bµγ
µ + cµνσ

µν + dγ5 + eµγ
5γµ (192)

σµν = i

2
[γµ, γν ] cµν = −cνµ (193)

The coefficients can be computed using the following trace identities

Tr(I) = 4, Tr(γµγν) = 1
2

Tr({γµ, γν}) = −4ηµν , (194)

Tr(σµν) = 0, Tr(γ5) = 0, Tr(γ5γµ) = 0, (195)

Tr(γαγβγµγν = 4(ηαβηµν − ηαµηβν + ηανηβµ) (196)

In addition to these identities we will need

Tr(σµν) = 0 (197)
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(follows from (??),

Tr(σµνσα) = 0 (198)

(follows from odd number of gamma matrices),

Tr(σµνγ5) = 0 (199)

follows because

Tr(γνγµγ5) = 0 (200)

Tr(M) = 4a (201)

since

Tr(γµ) = Tr(σµν) = Tr(γ5) = Tr(γ5γµ) = 0 (202)

Tr(γµM) = bνTr(γµγν) = −4ηµνbν = −4bµ (203)

since

Tr(γαI) = Tr(γασµν) = Tr(γαγ5) = Tr(γαγ5γµ) = 0 (204)

Tr(γ5M) = 4d (205)

Tr(γ5γµM)eνTr(γ5γµγ5γν) = −eνTr(γµγν) == 4eνηµν = 4eµ (206)

cµνTr(σαβσµν) = −cµνTr(ηαβηµν−ηαµηβν+ηανηβµ−ηαβηνµ+ηανηβµ−ηαµηβν−ηαβηµν+ηβµηαν−ηβνηαµηβαηνµ−ηβνηαµ+ηβµηαν)

(207)

−16cµν(ηανηβµ − ηαµηβν) = 16cαβ (208)

XI. IMPULSE MATRIX ELEMENTS

To compute matrix elements it is useful to keep track of independent kinematic vari-

ables. The matrix element is a sum of terms with different spectator nucleons. In the Born

terms there are no integrals. All variables can be expressed in terms of the total Deuteron

momentum and the momenta of the two final nucleons.

⟨p′
1, ν

′
1,p′

2, ν
′
2|jµ(0)|(D, j)P, µ; l, s⟩ =

⟨P′−p2, ν
′
1|j

µ
1 (0)|p1, ν1⟩Ds2

ν′2µ2
[B−1(p2)B(P )B(k2)]Ds1

ν1µ1 [B−1(p1)B(P )B(k1)]Ylm(k̂(p1,p2))×

C(s12µ12; s1, µ1, s2, µ2)C(jµ; l,m, s12µ12)

√
ω1(p1) + ω2(p2)
ω1(k1) + ω2(k2)

√
ω1(k1)ω2(k2)
ω1(p1)ω2(p2)

ϕj
ls(k)+
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⟨P′ −p1, ν
′
2|j

µ
2 (0)|p2, ν2⟩Ds2

ν2µ2 [B−1(p2)B(P )B(k2)]Ds1
ν′1,µ1

[B−1(p1)B(P )B(k1)]Ylm(k̂(p1p2))×

C(s12µ12; s1, µ1, s2, µ2)C(jµ; l,m; s12µ12)

√
ω1(p1) + ω2(p2)
ω1(k1) + ω2(k2)

√
ω1(k1)ω2(k2)
ω1(p1)ω2(p2)

ϕj
ls(k) (209)

where for the first term

p1 = P − p′
2 k = k(P − p′

2,p′
2) = p1 + P

M

(
P · p1

M +H
− ω1(p1)

)
(210)

and for second term

p2 = P − p′
1 k = k(p′

1,P − p′
1) = p′

1 + P
M

(
P · p′

1
M +H

− ω1(p′1)
)

(211)

where for both terms

H = ω1(p1) + ω1(p2) M =
√
H2 − P2 (212)

k2 = (ω2(k1),−k1). (213)

The boost are given by

D1/2
µν [B(p)] = B(p)µν =

√√
1 + p2/m2 + 1

2
σ0µν +

√√
1 + p2/m2 − 1

2
p̂ · σσσµν =

√√
m2 + p2 + 1

2m
σ0µν +

√√
m2 + p2 −m

2m
p̂ · σσσµν (214)

D1/2
µν [B−1(p)] = B−1(p)µν =√√

1 + p2/m2 + 1
2

σ0µν −

√√
1 + p2/m2 − 1

2
p̂ · σσσµν =√√

m2 + p2 +m

2m
σ0µν −

√√
m2 + p2 −m

2m
p̂ · σσσµν . (215)

The current matrix elements are

1
(2π)3 ⟨pi, ν

′
i|j

µ
i (0)|pi, νi⟩ =

√
m

ω(pi)
ūν′i(p

′)Γµuνi(pi)
√

mi

ω(pi)
(216)

where Γµ is similar to (164 or 167) but will generally have form factors. The factors of u(p)

and Γµ must be in the same representation.

Note for the BD spinors

1
2

(P (p) + P−1(p)) =

√√
1 + p2/m2 + 1

2
σ0µν =

√
m+ ωm(p)

2m
(217)
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1
2

(P (p) − P−1(p)) =

√√
1 + p2/m2 − 1

2
p̂ · σσσµν =

√
m+ ωm(p)

2m
p · σσσ

m+ ωm(p (218)

which gives

S(P (p)) =
√
m+ ωm(p)

2m

 σ0
p·σσσ

m+ωm(p
p·σσσ

m+ωm(p σ0

 (219)

which agrees with (3.7) of BD volume 1. The u(p) and v(p) BD spinors are defined by

applying (219) to the rest spinors in the BD representation

uBD(0) = W
1√
2

 σ0

σ0

 =

 σ0

0

 (220)

vBD(0) = W
1√
2

 σ0

−σ0

 =

 0

σ0

 (221)

They are just the columns of the matrix (219)

uBD(p) = S(P (p)

 σ0

0

 =
√
m+ ωm(p)

2m

 σ0

p·σσσ
m+ωm(p

 =
√

1 + v0

2

 σ0

v·σσσ
1+v0

 (222)

vBD(p) = S(P (p))

 0

σ0

 =
√
m+ ωm(p)

2m

 p·σσσ
m+ωm(p

σ0

 =
√

1 + v0

2

 v·σσσ
1+v0

σ0

 (223)

where vµ = pµ/m is the 4 velocity.

XII. RELATIVISTIC SCATTERING THEORY

A relativistic treatment of scattering is needed to model reactions that are sensitive to

short-distance degrees of freedom. The formulation of scattering in relativistic quantum

mechanics is identical essentially identical to the non-relativistic case.

The elementary quantum mechanical observable in a scattering experiment is the prob-

ability that a system prepared in an initial state is measured to be in a final state. These

states are represented by normalizable solutions of the Schrödinger equation

|ψα(t)⟩ = U(t)|ψα(0)⟩, |ψβ(t)⟩ = U(t)|ψβ(0)⟩, (224)
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where U(t) = e−iHt is the unitary time evolution operator. For unit normalized vectors the

transition probability for scattering from state β to state α is

Pαβ := |⟨ψα(t)|ψβ(t)⟩|2 = |⟨ψα(0)|U †(t)U(t)ψβ(0)⟩|2 = |⟨ψα(0)|ψβ(0)⟩|2. (225)

The unitarity of the time evolution operator means that this probability can be evaluated

at any common time.

If t = 0 represents the approximate time of collision, the initial state at a time long-before

the collision is a state representing a target and a projectile where the mean positions of

the target and projectile are separated beyond the range of the interaction and the mean

momentum of the projectile is directed towards the target. Similarly, the final state at a

time long after the collision represents mutually non-interacting asymptotically separated

fragments with their mean momenta directed towards some detectors. The difficulty with

computing the transition probability (225) is that there is no common time when both of

these states have a simple structure. In addition, the initial and final states are not precisely

known in any experiment. Both of these issues will be addressed below.

In applications it is necessary to consider a multichannel formulation of scattering theory.

The formulation must allow for scattering from bound systems of particles and allow bound

reaction products.

In order to evaluate the initial and final states at a common time it is useful to replace

the initials condition in the Schrödinger equation by asymptotic conditions that fix both

the initial and final states at times when they are simple and related to the experimental

preparation. The first step is to describe the system long after or long before the scattering

reaction.

In what follows the projectile, target and the fragments in the initial and final states

are assumed to be particles or stable bound systems of particles. Cluster properties of

the unitary representation of the Poincaré group mean that when it acts on a state of

asymptotically separated subsystems that it can be approximated by a product of subsystem

unitary representations of the Poincaré group:

(U(Λ, a) −
∏
i

Ui(Λ, a))|ψ⟩ ≈ 0 (226)

where the state vector for a system of asymptotically separated particles can be represented
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by a product of wave packets for each particle:

|ψ⟩ =
∏
i

|ψi⟩ (227)

In (226)
∏

i Ui(Λ, a)) is obtained from U(Λ, a) by turning off the interactions between each

asymptotically separated particle or subsystem. Particles are identified with point spectrum

eigenstates of the mass operator associated with each Ui(Λ, a). These could be either ele-

mentary particles or subsystem bound states. Mass-spin eigenstates can be expanded in an

irreducible basis. They have to be integrated against wave packets to construct normalizable

states. The normalizable single-particle state vectors have the form

|ψi⟩ =
ji∑

µi=−ji

∫
|(mi, ji)pi, µi⟩dpifi(pi, µi) (228)

where fi(pi, µi) is a square integrable function of the momentum and spin of the i-th particle.

|(mi, ji)pi, µi⟩ is a point spectrum mass eigenstate of Ui(Λ, a). The point spectrum mass

eigenstates, |(mi, ji)pi, µi⟩, could represent elementary or composite particles with momen-

tum pi and spin projection µi. The functions fi(pi, µi) are wave packets that determine

the mean momentum, position and spin polarization of each particle. For now they can be

taken as minimal uncertainty states of the form

fi(pi, µi) = cµi

(2π)3/4(∆pi)3/2 e
− (pi−pi0)2

(2∆pi)2 . (229)

where the cµ are constants that determine the spin polarization. They are just Gaussian

states in momentum space with a given mean momentum and momentum uncertainty. They

are constructed so the uncertainty in the conjugate coordinates are determined by minimal

uncertainty. Later we will construct observables that are insensitive to the structure of the

wave packets.

In the absence of interactions the time evolution of these states is given by Ui(I, t)

|ψi(t)⟩ =
ji∑

µi=−ji

∫
Ui(I, t)|(mi, ji)pi, µi⟩dpfi(p, µ) =

ji∑
µi=−ji

∫
|(mi, ji)pi, µi⟩e−i

√
p2
i +m2

i tdpfi(p, µ) (230)

A two Hilbert space representation is used to formulate multi-particle scattering. A scatter-

ing channel labels a collection of initial or final particles (or bound states). The asymptotic
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Hilbert space for channel α is the Hilbert space spanned by the products of square inte-

grable functions, fi(pi, µi) of the momenta and magnetic quantum numbers of particles

(bound states) in the channel α. The channel-α Hilbert space is denoted by Hα.

A mapping Φα from Hα to the Hilbert space of the quantum theory is defined by

Φα|fα⟩ :=
∏
i∈α

|(mi, ji)pi, µi⟩f(p1, µ1 · · ·pn, µn⟩. (231)

The unitary representation of the Poincaré group on Hα is defined by

⊗Ui(Λ, a)Φα|fα⟩ = ΦαUfα(Λ, a)|fα⟩. (232)

The transformation properties of Ufα(Λ, a) on |fα⟩ follow from the definitions

⊗Ui(Λ, a)Φα|fα⟩ = ΦαUfα(Λ, a)|fα⟩ =∏
i

∫ ∑
Ui(Λ, a)|(mi, ji)pi, µi⟩dpif(p1, µ1 · · ·pn, µn) =

∏
i

∫ ∑
|(mi, ji)ΛΛΛpi, νi⟩eiΛpi·a

√
ωmi

(ΛΛΛpi)
ωmi

(pi)
Dji

νiµi
[Rw(Λ, pi)]f(p1, µ1 · · ·pn, µn)

∏
i

∫ ∑
|(mi, ji)p′

i, νi⟩eip
′
i·a

√
ωmi

(p′
i)

ωmi
(ΛΛΛ−1p′i)

Dji
νiµi

[Rw(Λ,Λ−1pi)]f(ΛΛΛ−1p′1, µ1 · · ·ΛΛΛ−1p′n, µn).

(233)

The channel time evolution operator is

Ufα(t) = e−iHαt = e−i
∑

j∈α

√
m2

j+p2
j t (234)

where

Hα =
∑
j∈α

√
m2

j + p2
j (235)

Note that if we express

H = Ha + V a (236)

where V a represents the interactions in H between paticles in asymptotically separated

cluster of the channel α and Ha includes all of the interaction between particles in the same

clusters of α then

HaΦα = ΦαHα. (237)

Equation (234) describes the time evolution of the mutually non-interacting particles or

bound states in channel α.
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The scattering probability for multi-channel scattering can be expressed in terms of the

multi-channel scattering operator

Pα,β = |Sαβ|2. (238)

The multi-channel scattering matrix is the probability amplitude

Sαβ = ⟨Ψ+
α (0)|Ψ−

β (0)⟩ (239)

where α and β are channel labels and where the initial and final scattering states |Ψ+
α (t) and

⟩|Ψ−
β (t)⟩ are solutions of the time-dependent Schrödinger equation with initial conditions

replaced by the scattering asymptotic conditions

lim
t→±∞

∥Ψ±
α (t)⟩ − Φα|f±

α (t)⟩∥ = lim
t→±∞

∥e−iHt|Ψ±
α (0)⟩ − Φαe

−iHαt|f±
α (0)⟩∥ = 0. (240)

These equations define time-dependent solutions of the Schrödinger equation that look like

non-interacting particles or bound states in the asymptotic past or future. Because this is a

strong limit the unitary operator eiHt can be removed replacing equation (240) by

lim
t→±∞

∥eiHt(e−iHt|Ψ±
α (0)⟩−Φαe

−iHαt|f±
α (0)⟩)∥ = lim

t→±∞
∥|Ψ±

α (0)⟩− eiHtΦαe
−iHαt|f±

α (0)⟩)∥ = 0

(241)

which gives an expression for the states that appear in the expression for the scattering

probability amplitude in terms of the free wave packets and bound state vectors.

Wave operators are defined as mappings from the asymptotic channel Hilbert space Hα

to the Hilbert space H of the theory

|Ψ±
α (0)⟩ = Ωα±(H,Φα, Hα)|f±

α (0)⟩ (242)

where the multichannel wave operators are defined by

Ωα± = lim
t→±∞

eiHtΦαe
−iHαt. (243)

The multichannel scattering operator can then be expressed in terms of the wave operators

as

Sαβ = Ω†
α+(H,Φα, Hα)Ωβ−(H,Φβ, Hβ). (244)

In these notes the ± on the scattering states and wave operators indicates the direction

of the time limit (− =past/+ =future), which is opposite to the sign of iϵ. The operator
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Πα projects on the different possible scattering channels. The asymptotic and interacting

scattering states are related by the multichannel wave operators

In order to evaluate the wave operators the first step is to express the limit as the

integral of a derivative: Because the limit in (243) is a strong limit it is only defined when

the operators are applied to wave packets, as they are in (242).

Ωα± := Φα +
∫ ±∞

0

d

dt
(eiHtΦαe

−Hαt)dt = Φα + i

∫ ±∞

0
eiHtHaΦαe

−iHαtdt. (245)

where we have used (236). Convergence follows provided

∥
∫ ±∞

0
eiHtHaΦαe

−iHαtdt|f±
α (0)⟩∥ <∞. (246)

A sufficient condition for this to be finite is∫ ±∞

0
∥eiHtHaΦαe

−iHαtdt|f±
α (0)⟩∥ <∞ (247)

or equivalently by unitarity of eiHt∫ ±∞

0
∥HaΦαe

−iHαtdt|f±
α (0)⟩∥ <∞. (248)

Whether this is true depends on the interactions. The product HaΦα is translationally

invariant, but it falls off in all relative directions. Intuitively the combination of the bound

states in Φα and the interactions between particles in different bound states in Ha lead to

terms that fall off for large time off like inverse powers of t for large t. In non-relativistic

quantum mechanics this is called the Cook condition.

In what follows we assume that the channel Møller wave operators exist.

The channel Møller wave operators satisfy the intertwining relations

HΩα± = Ωα±Hα. (249)

To prove (249) note that

eiHsΩα± = lim
(t+s)→±∞

eiH(t+s)Φαe
−iHα(t+s)eiHαs = Ωα±e

iHαs. (250)

Differentiation with respect to s, setting s to zero gives (249). This condition ensures that

energy is conserved in the scattering experiment. Let |Eα⟩ be an eigenstate of Hα with

eigenvalues Eα. Then (249) gives

HΩα±|Eα⟩ = Ω±Hα|Eα⟩ = Ωα±Eα|Eα⟩ (251)
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which shows that Ωα± maps eigenstates of Hα with energy Eα to eigenstates of H with

the same energy. This is a reflection of the fact that the energy of the scattering state is

conserved and agrees with its values when the particles are asymptotically separated.

It also follows from (249) that

|Ψ±
α (t)⟩ = U(t)|Ψ±

α (0)⟩ = U(t)Ωα±|f±
α (0)⟩ = Ωα±Uα(t)|f±

α (0)⟩ = Ωα±|f±
α (t)⟩. (252)

The probability for scattering from a state in channel α to one in channel β can be expressed

directly in terms of the asymptotic free-particle wave packets using channel Møller operators:

Pαβ = |⟨Ψ+
β (t)|Ω†

β+Ωα−|Ψ−
α (t)⟩|2 = |⟨f+

β (0)|Ω†
β+Ωα−|f−

α (0)⟩|2 (253)

which is independent of t by (225).

The channel scattering operator, Sβα, is defined by

Sβα := Ω†
β+Ωα−. (254)

The scattering probability can be expressed in terms of the channel asymptotic states and

Sβα as

Pαβ = |⟨f+
β (0)|Sβα|f−

α (0)⟩|2 = |⟨f+
β (t)|Sβα|f−

α (t)⟩|2. (255)

If we denote the set of all possible scattering channels by A then we can define multi-

channel versions of the equations above. The asymptotic Hilbert space is the orthogonal

direct sum of the channel Hilbert spaces

HA := ⊕α∈AHα. (256)

ΠαHA → Hα (257)

denotes the orthogonal projector from the asymptotic Hilbert to each channel Hilbert space

Hα. The asymptotic Hamiltonian is defined by

HA :=
∑
α∈A

HαΠα (258)

A Multichannel injection operator that maps the asymptotic Hilbert space to the Hilbert

space of the theory is defined by

ΦA :=
∑
α∈A

ΦαΠα (259)
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Multichannel wave operators that map the asymptotic Hilbert space to the Hilbert space of

the theory are defined by

Ω± = Ω±(H,Φα, Hα) := lim
t→±∞

eiHtΦAe
−iHAt, (260)

S := Ω†
+Ω− : HA → HA (261)

If the initial and final asymptotic states are chosen in channels β and α this becomes (255).

If the bound states are included in A and the incoming and outgoing scattering states

both span the subspace orthogonal to the space spanned by the bound states, then the

multi-channel wave operators are unitary mappings from HA → H. This condition is called

asymptotic completeness, which will be assumed in what follows.

The advantage of expressing the probability in terms of the asymptotic states is that

they have a simple form where the asymptotic momenta an polarizations are controlled by

experiment. The problem is that the probability in principle may depend on the detailed

on the structure of the wave packets.

XIII. TIME INDEPENDENT MULTI-CHANNEL SCATTERING THEORY

In this section the definitions from the previous section are used to formulate the more

familiar time-independent formulation of scattering. This will be used to remove the sensi-

tivity to the choice of wave packets. To do this start with the time dependent expression

for the channel scattering operator, expressing the time limit as the integral of a derivative

⟨f+
β (0)|Sβα|f−

α (0)⟩ = ⟨f+
β (0)|Ω†

β+Ωα−|f−
α (0)⟩ = lim

t→∞
⟨f+

β |e
iHβtΦ†

βe
−2iHtΦαe

iHαt|f−
α ⟩ =

⟨f+
β |Φ

†
βΦα|f−

α ⟩ +
∫ ∞

0
dt
d

dt
⟨f+

β |e
iHβtΦ†

βe
−2iHtΦαe

iHαt|f−
α ⟩ =

⟨f+
β |Φ

†
βΦα|f−

α ⟩ +
∫ ∞

0
dt⟨f+

β |e
iHβt(−iΦ†

βH
b)e−2iHtΦαe

iHαt|f−
α ⟩+∫ ∞

0
dt⟨f+

β |e
iHβtΦ†

βe
−2iHt(−iHaΦα)eiHαt|f−

α ⟩ =

⟨f+
β |Φ

†
βΦα|f−

α ⟩ + lim
ϵ→0+

∫ ∞

0
dt⟨f+

β |e
(iHβ−ϵ)t(−iΦ†

βH
b)e−2iHtΦαe

(iHα−ϵ)t|f−
α ⟩+

lim
ϵ→0+

∫ ∞

0
dt

∫ ∞

0
dt⟨f+

β |e
(iHβ−ϵ)tΦ†

βe
−2iHt(−iHaΦα)e(iHα−ϵ)t|f−

α ⟩ (262)
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where we have used (236) again. Introducing the factors of ϵ leaves the result unchanged

provided that the integrals over the wave packets are performed before the time integral. If

the factors of ϵ remain then it is possible to change the order of the time integration and

the integration over wave packets. Thus with the epsilon factors the time integral can be

done by replacing the wave packets by energy eigenstates, and only after the limit ϵ → 0

integrating the wave packets over plane wave energy eigenstates,

In what follows we keep the factors of ϵ and replace |f+
α ⟩ and |f−

β ⟩ by energy eigenstates

|E+
α ⟩ and |E−

β ⟩ of Hα and Hβ. This has the advantage we can work with “plane-wave energy

eigenstates. At the end of the calculation the wave packets have to be put back in.

With the ϵ factor (262) becomes, after removing the wave packets,

Φ†
βΦα + lim

ϵ→0

∫ ∞

0
dtΦ†

βe
(iEβ−ϵ)te−2iHt(−iHa)e(iEα+ϵ)tΦα+

lim
ϵ→0

∫ ∞

0
dt|Φ†

βe
(iHβ−ϵ)t(−iHb)e−2iHte(iEα−ϵ)tΦα =

Φ†
βΦα + lim

ϵ→0
Φ†

β

1
2i((Eβ + Eα)/2 −H + iϵ/2)

(iHa)Φα+

lim
ϵ→0

Φ†
β(iHb) 1

2i((Eβ + Eα)/2 −H + iϵ/2)
Φα. (263)

We define the average energy by

Ēβα := Eβ + Eα

2
. (264)

With definition (264) equation (263) becomes

Φ†
βΦα + lim

ϵ→0
Φ†

β

1
2i(Ēβα −H + iϵ/2)

(iHa)Φα + lim
ϵ→0

Φ†
β(i(Hb) 1

2i(Ēβα −H + iϵ/2)
Φα =

Φ†
βΦα + 1

2
lim
ϵ→0

Φ†
β

1
(Ēβα −H + iϵ/2)

HaΦα + 1
2

lim
ϵ→0

Φ†
βH

b 1
(Ēβα −H + iϵ/2)

Φα. (265)

The second resolvent identities in the equivalent forms

1
(Ēβα −H + iϵ/2)

= 1
(Ēβα −Hb + iϵ/2)

(
I +Hb 1

(Ēβα −H + iϵ/2)

)
=

(
I + 1

(Ēβα −H + iϵ/2)
Ha

)
1

(Ēβα −Ha + iϵ/2)
(266)

are inserted in (265) to get

= Φ†
βΦα + 1

2
lim
ϵ→0

Φ†
β

1
(Ēβα −Hb + iϵ/2)

(
I +Hb 1

(Ēβα −H + iϵ/2)

)
HaΦα+
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1
2

lim
ϵ→0

Φ†
βH

b

(
I + 1

(Ēβα −H + iϵ/2)
Ha

)
1

(Ēβα −Ha + iϵ/2)
=

Φ†
βΦα + 1

2
lim
ϵ→0

Φ†
β

1
(Ēβα − Eβ + iϵ/2)

(
Ha +Hb 1

(Ēβα −H + iϵ/2)
Ha

)
Φα+

1
2

lim
ϵ→0

Φ†
β

(
Hb +Hb 1

(Ēβα −H + iϵ/2)
Ha

)
1

(Ēβα − Eα + iϵ/2)
=

Φ†
βΦα + lim

ϵ→0

1
Eα − Eβ + iϵ/2

Φ†
β

(
Ha +Hb 1

(Ēβα −H + iϵ/2)
Ha

)
Φα+

lim
ϵ→0

1
Eβ − Eα + iϵ/2

Φ†
β

(
Hb −Ha +Ha +Hb 1

(Ēβα −H + iϵ/2)
Ha

)
1

(Ēβα − Eα + iϵ/2)
=

Φ†
βΦα + lim

ϵ→0
Φ†

β

H −Hb −H +Ha

Eβ − Eα + iϵ/2
Φα+

lim
ϵ→0

(
1

Eα − Eβ + iϵ/2
+ 1
Eβ − Eα + iϵ/2

)
Φ†

β

(
Ha +Hb 1

(Ēβα −H + iϵ′)
Ha

)
Φα =

Φ†
βΦα lim

ϵ→0
Φ†

β

Eβ − Eα

Eβ − Eα + iϵ/2
Φα+

lim
ϵ→0

(
1

Eβ − Eα + iϵ/2
+ 1
Eβ − Eα + iϵ/2

)
Φ†

β

(
Ha +Hb 1

(Ēβα −H + iϵ/2)
Ha

)
Φα =

lim
ϵ→0

Φ†
β

iϵ/2
Eβ − Eα + iϵ/2)

Φα

−2 lim
ϵ→0

ϵ/2
(Eα − Eβ)2 + (ϵ/2)2 Φ†

β

(
Ha +Hb 1

(Ēβα −H + iϵ/2)
Ha

)
Φα. (267)

Taking the limit using

lim
ϵ→0

ϵ/2
(Eα − Eβ)2 + (ϵ/2)2 = πδ(Eα − Eβ) (268)

gives

Sαβ = δβαΦ†
βΦα − 2πiδ(Eα − Eβ)Φ†

β

(
Ha +Hb 1

(Eα −H + iϵ/2)
Ha

)
Φα (269)

where the first term vanishes in the limit ϵ→ 0 when the channels are different. When the

channels are the same, we have two eigenstates of Ha that will be orthogonal unless the

energies are identical, which results in the factor δβαΦ†
β. Given the normalization condition

this is just the identity in the channel Hilbert space Hβ. Because of the delta functions

Ēβα = Eα = Eβ.
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To calculate the scattering probability these states have to be integrated over unit normal-

ized initial and final wave packets. The operator that is needed to compute the non-trivial

part of

Sαβ = δβαΦ†
βΦα − 2πiδ(Eα − Eβ)Φ†

βT
abΦα (270)

is the transition operator

T ba(z) = Ha +Hb 1
z −H

Ha z = Ēα + iϵ. (271)

The assumption that the unitary representation of the Poincaré group, U(Λ, a), satis-

fies cluster properties means that the wave operators satisfy intertwining relations (see the

discussion on page 120 of volume 1 of Weinberg’s book on quantum field theory)

U(Λ, a)Ω±α = Ω±αUα(Λ, a) (272)

A sufficient condition is that all of the Poincaré generators Gi satisfy a Cook-like condition∫
dt∥(GiΦα − ΦαGαi)e−iHαtf±

α (0)⟩∥ <∞ (273)

This implies

Uβ(Λ, a)Sβα = Uβ(Λ, a)Ω†
β+Ωα− = Ω†

β+U(Λ, a)Ωα− = Ω†
β+Ωα−Uα(Λ, a). (274)

For the full multi-channel scattering operator this means that

[UA(Λ, a), S] = 0 (275)

which means that the scattering operator is Poincaré invariant.

In the non-relativistic case the Hamiltonian has the form

H = P2

2M
+ h. (276)

Because of momentum conservation all calculations can be done by replacing H by h, which

is equivalent to working in the rest frame of the system. The Poincaré invariance of the

multi-channel scattering operator (275) means that the relativistic calculations can also be

done in the rest frame of the system. Specifically boost invariance means that we can boost

S to the rest frame without changing the operator. Mathematically if the interactions are

well behaved the Kato-Birman theorem implies

lim
t→±∞

∥(eiHtΦαe
iHαt − eig(H)tΦαe

ig(Hα)t)|f±
α (0)⟩∥ = 0 (277)
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for sufficiently nice functions g(H). This is because everything Reimann -Lebesgues to death

unless the energy is conserved - which results in operators satisfy intertwining relations. In

the relativistic case choosing g =
√
H2 − P2 means that we can replace H by M and Hα by

Mα =
√
H2

α − P2α etc.. Mathematically the result

lim
t→±∞

∥(eiHtΦαe
iHαt − eiMtΦαe

iMαt)|f±
α (0)⟩∥ = 0 (278)

means that Sαβ can also be expressed in terms of the mass operator, which is the relativistic

analog of the non-relativistic h:

Sαβ = δβαΦ†
βΦα − 2πiδ(Mα −Mβ)Φ†

β

(
Ma +M b 1

(Mα −M + iϵ/2)
Ma

)
Φα (279)

In an instant form dynamics the interactions are translationally invariant which allows one

to factor out a 3-momentum conserving delta function in addition to the energy conserving

delta function.

In the particle data book reduced transition matrix elements are defined by

(2π)δ(E ′ − E)⟨p′|T ba|p⟩ = (2π)4δ(p′ − p)⟨p′∥T ba∥p⟩ (280)

In this work I define the reduced matrix element by simply factoring our the momentum

conserving delta fucntion:

⟨p′|T ba|p⟩ = δ(p′ − p)⟨p′∥T ba∥p⟩ (281)

without the factor of (2π)3. This difference appears when we relate our formulas to those

that appear in the particle data book which uses the convention (280).

XIV. CROSS SECTIONS

The problem with the scattering probability is that it depends on the structure of the

initial and final wave packets. While there is some experimental control of the momenta

and spins of the incident and scattered particles, it is not at the level of wave packets. The

purpose of this section is to eliminate the sensitivity of the scattering observables to the

choice of wave packet.

The relevant observable for the final states is the cross section. I develop it following

methods used by Brenig and Haag. An initial state consisting of a target t in a state |ft⟩
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and beam b in a state |fb⟩ leads to the asymptotic differential probability amplitude for a

n-particle final state in channel α:

⟨p1, µ1, · · · ,pn, µn|ftfb⟩ :=
∫

⟨p1, µ1 · · · ,pn, µn|Sαβ|pb, µb,pt, µt⟩dpbdpt⟨pb, µb|fb⟩⟨pt, µt|ft⟩.

(282)

The differential probability for observing each final particle to be within dpi of pi with spin

polarization µi for this initial state is

dP = |⟨p1, µ1 · · · ,pn, µn|ftfb⟩|2dp1 · · · dpn. (283)

Inserting the expression (270 and 272) for S in terms of the wave packets in (283), assuming

either different initial channels or non-forward scattering, so there is no contribution from

the Φ†
αΦβδαβ part of the scattering operator, gives

dP = dp1 · · · dpn

∫
(2π)2⟨p1, µ1, · · · ,pn, µn∥Φ†

αT
αβΦβ∥p′

b, µb,p′
t, µt⟩ (284)

× ⟨p1, µ1, · · · ,pn, µn∥Tαβ∥p′′
b , µb,p′′

t , µt⟩∗δ

(∑
i

pi − p′
b − p′

t

)
δ

(∑
j

pj − p′′
b − p′′

t

)
× δ(Eα − E′

bt) δ(Eα − E′′
bt)dp′

bdp′
tdp′′

bdp′′
t ⟨p′

b, µ
′
b|fb⟩⟨p′′

b , µ
′′
n|fb⟩∗⟨p′

t, µ
′
t|ft⟩⟨p′′

t , µ
′′
t |ft⟩∗(285)

where we have factored out three-dimensional momentum conserving delta functions assum-

ing that the interactions are translationally invariant following (281).

The products of the 4-momentum conserving delta functions in (283) can be replaced by

products of the equivalent four momentum conserving delta functions:

δ4(
∑
i

pi − p′b − p′t) δ4(
∑
j

pj − p′′b − p′′t ) = δ4(
∑
i

pi − p′b − p′t) δ4(p′b + p′t − p′′b − p′′t ). (286)

If the initial wave packets are sharply peaked about the target and beam momenta and the

transition operator varies slowly on the support of these wave packets, then the transition

operators can be factored out of the integral, replacing the beam and target momenta in

the transition matrix elements with the mean target and beam momenta, p̄b, p̄t. When this

approximation is justified the cross section will be independent of the shape of the wave

packets. The result, after expressing the second four momentum conserving delta function

in (286) using a Fourier representation

δ4(p′b + p′t − p′′b − p′′t ) = ( 1
2π4

∫
eix·(p

′
b+p′t−p′′b−p′′t )d4x (287)
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is

dP = (2π)4dp1, · · · dpn

∫ ∣∣⟨p1, µ1 · · · ,pn, µn∥Φ†
αT

αβΦβ∥p̄b, µbp̄t, µt⟩
∣∣2 ×

× |⟨x, t, µb|fb⟩|2|⟨x, t, µt|ft⟩|2dx dtδ

(∑
i

pi − p̄b − p̄t

)
δ

(∑
i

Epi − Ēb − Ēt

)
.(288)

where

⟨x, t, µb|fb⟩ :=
∫

dpb

(2π)3/2 e
ipb·x−iEb(p)t⟨p, µ|ft⟩ ⟨x, t, µt|ft⟩ :=

∫
dpt

(2π)3/2 e
ipt·x−iEt(p)t⟨p, µ|ft⟩

(289)

are time-dependent wave packets for the beam and target particles. This is the differential

probability for a single scattering event. The space-time integral picks up a contribution

whenever the beam and target are in the same place at the same time. For a single event

this space-time volume is finite.

In a real experiment there is a beam of particles with current

jb = vbtnb (290)

where vbt is the relative velocity between the beam and target particles and nb is the number

of beam particles per unit volume. The beam is normally incident on a target with nt target

particles per unit volume. Assuming that each beam particle scatters at most once the

number of particles scattered per unit volume per unit time is proportional to both the

target density and the normal component of the beam current

dNsc

dV dt
= ntjbdσ = ntnnvbtdσ (291)

where the constant of proportionality dσ defines the different cross section, which by dimen-

sional analysis has units of area.

On the other hand the total number of scattering events is equal to the probability of a

scattering event per unit time per unit volume, times the total number of beam and total

numbers of target particles integrated over all space and time

Nsc = NbNt

∫
dP

dV dt
dV dt =

∫
dNsc

dV dt
dV dt. (292)

It follows that

dNsc

dV dt
= NbNt

dP

dV dt
nb = Nb|⟨x, µb|fb⟩|2 nt = Nt|⟨x, µt|ft⟩|2 (293)
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Using (288) in (293)

dNsc

dV dt
= (2π)4dp1, · · · dpn

∫ ∣∣⟨p1, µ1 · · · ,pn, µn∥Φ†
αT

αβΦβ∥p̄b, µb, p̄t, µt⟩
∣∣2 ×

Nb|⟨x, t, µb|fb⟩|2︸ ︷︷ ︸
nb

Nt|⟨x, t, µt|ft⟩|2︸ ︷︷ ︸
nt

δ

(∑
i

pi − p̄b − p̄t

)
δ

(∑
i

Epi − Ēb − Ēt

)
. (294)

comparing (294) to (291) results in the following expression for the differential cross section

dσ = (2π)4

vbt
dp1, · · · dpn

∫ ∣∣⟨p1, µ1 · · · ,pn, µn∥Φ†
αT

αβΦβ∥p̄b, µb, p̄t, µt⟩
∣∣2 ×

δ

(∑
i

pi − p̄b − p̄t

)
δ

(∑
i

Epi − Ēb − Ēt

)
.

(295a)

(295b)

Where everything we have done is fully relativistic.

The important observation is that this expression is not sensitive to the choice of initial

wave packets provided they are sufficiently narrow. For the final states the cross section

is proportional to the number of particles detected within dp1 of p1, · · · dpn of pn with

spin polarizations µ1, · · ·µn assuming the beam and target particles had polarization µb and

µt. This is again insensitive to the structure of the final wave packets and corresponds to a

quantity that can be measured in the laboratory.

Integrating the cross section over the area of the surface of a large sphere give the total

cross section which is dimensionless. It is a Lorentz invariant quantity. This means that we

should be able to express the cross section in terms of Lorentz covariant quantities.

To extract the standard expression for the invariant amplitude the single particle states

are replaced by states with the covariant normalization used in the particle data book [? ]:

The first step is to replace the phase space factors by the corresponding invariant phase

space factors

δ

(∑
i

pi − p̄b − p̄t

)
δ

(∑
i

Epi − Ēb − Ēt

)
dp1, · · · dpn →

δ4(pb + pt −
∑

pi)
N∏
i=1

dpi

(2π)32Ei

. (296)
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These are invariant since each factor of dpi

2Ei
is manifestly invariant,∫

dpi

2Ei

=
∫
δ(p2 −m2)θ(p0)d4pi, (297)

while the factors of (2π)−3 a particle data book convention.

In order to cancel these factors the inverses are put in the expression for the transition

matrix elements

⟨p1, µ1 · · · ,pn, µn∥Φ†
αT

αβΦβ∥p̄b, µb, p̄t, µt⟩ → ⟨p1, µ1 · · · ,pn, µn∥Mαβ∥p̄b, µb, p̄t, µt⟩ :=

(2π)3
n∏

i=1

√
(2π)32Ei⟨p1, µ1 · · · ,pn, µn∥Φ†

αT
αβΦ†

β∥p̄b, µb, p̄t, µt⟩
√

(2π)32Eb

√
(2π)32Et

(298a)

(298b)

The additional factor of (2π)3 is becasue the particle data book convention defines the

reduced transition matrix elements using (280) rather than (281).

The energy factors make the plane wave states into states that transform covariantly

(see 114-115). In this case the various factors of (2π)3/2 are part of the particle data book

conventions - they account for the corresponding factors in the invariant phase space. What

remains is
(2π)4

4EbEtvbt
(299)

It is easy to check that EbEtvbt is an invariant quantity

EbEtvbt =
√

(pt · pb)2 −m2
bm

2
t (300)

The resulting formula for the differential cross section becomes

dσ = (2π)4

4
√

(pt · pb)2 −m2
bm

2
t

|⟨p1, µ1 · · · ,pn, µn∥Mαβ∥p̄b, µb, p̄t, µt⟩|2δ4(pb + pt −
∑

pi)
N∏
i=1

dpi

(2π)32Ei

.

(301)

which is exactly the expression in the particle data book, where here the reduced Tαβ has

the normalization (281). In terms of the standard definition of Tαβ and states with delta

function normalization the cross section is

dσ = (2π)4ωb(pb)ωt(pt)√
(pt · pb)2 −m2

bm
2
t

|⟨p′
1, µ

′
1, · · ·p′

n, µ
′
n∥Tαβ∥p̄b, µb, p̄t, µt⟩|2δ4(pb+pt−

∑
pi)dp′

1 · · · dp′
n.

(302)
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This expression is an idealization with respect to the polarizations. No experiment has

perfectly polarized targets, beams or can perfectly identify polarizations in detectors. The

uncertainties can be treated using density matrices.

We assume that the polarizations in the target and beam have a classical probability

distribution given by the density matrices

ρb := |µb⟩Pbµb
⟨µb| × It (303)

ρt := |µt⟩Ptµt⟨µt| × Ib (304)

where Pbµb
and Ptµt represent the classical probability for a particle in the beam (target)

to have spin polarization µb (µt). Averaging over initial over initial initial spin and target

states gives

dσ =
∑
µbµt

(2π)4

4
√

(pt · pb)2 −m2
bm

2
t

⟨p1, µ1 · · · ,pn, µn∥Mαβ∥p̄b, µb, p̄t, µt⟩ρbµbµb
ρtµtµt×

⟨p̄b, µb, p̄t, µt∥Mαβ†∥p1, µ1 · · · ,pn, µn⟩δ4(pb + pt −
∑

pi)
N∏
i=1

dpi

(2π)32Ei

. (305)

In these expression we chose spin bases where the density matrices are diagonal; in general

the density matrices are Hermitian matrices with unit trace. In a general spin basis the

above expression is equivalent to

dσ =
∑

µbµt,µ′
b,µ

′
t

(2π)4

4
√

(pt · pb)2 −m2
bm

2
t

⟨p1, µ1 · · · ,pn, µn∥Mαβ∥p̄b, µb, p̄t, µt⟩ρbµbµ
′
b
ρtµtµ′

t
×

⟨p̄b, µ
′
b, p̄t, µ

′
t∥Mαβ†∥p1, µ1 · · · ,pn, µn⟩δ4(pb + pt −

∑
pi)

N∏
i=1

dpi

(2π)32Ei

. (306)

Computationally the final state information can be encoded a final state density matrix. This

is normally treated by constructing a basis of independent ((2j1 + 1)(2j2 + 1) · · · (2jn + 1))2

Hermitian matrices Si with the property

Tr(SiSj) = δij (307)

The relevant polarization observable is

P i = Tr(SiMρtρbM
†)

Tr(MρtρbM †)
(308)
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which be used to treat any kind of final state polarization. In this representation a general

polarization observable can be computed as

⟨O⟩ = Tr(OMρtρbM
†)

Tr(MρtρbM †)
= Tr(OSi)P i. (309)

XV. TWO POTENTIAL SCATTERING

When the Hamiltonian is a linear combination of an interaction that must be treated

non-perturbatively one that can be treated perturbatively it is useful to use the so called

two-potential formalism of Gell-Mann and Goldberger. To illustrate how this works assume

a Hamiltonian of the form

H = H0 + Vs + Vw (310)

where Vs is strong and Vw is weak. First consider the case of two-body scattering where

both interactions are short range interactions. In this H0 is the asymptotic Hamiltonian and

the scattering operator can be expressed as

S = lim
t→∞

eiH0te−2iHteiH0t =

lim
t→∞

eiH0te−i(H0+Vs)tei(H0+Vs)te−2iHtei(H0+Vs)te−i(H0+Vs)teiH0t. (311)

This can be replaced by the product of three limits

lim
t→∞

eiH0te−i(H0+Vs)t lim
t→∞

ei(H0+Vs)te−2iHtei(H0+Vs)t lim
t→∞

e−i(H0+Vs)teiH0t (312)

This is valid if all three limits exist. This gives

S = Ω†
+(H0 + Vs, H0) lim

t→±∞
ei(H0+Vs)te−2iHtei(H0+Vs)tΩ−(H0 + Vs, H0). (313)

Since Vw is weak it can be treated by perturbation theory. To do this define interaction

picture evolution operator

U(t, t′) = ei(H0+Vs)te−iH(t−t′)e−i(H0+Vs)t′ . (314)

U(t, t′) the solution of the integral equation

U(t, t′) = I − i

∫ t

t′
VW (t′′)U(t′′, t′)dt′′ VW (t) := ei(H0+Vs)tVW e

−i(H0+Vs)t. (315)
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Using the Dyson trick to remove the iterated integrals the iterative solution of this equation

can be expressed as a series of time ordered products of VW (t) integrated over a single time

interval:

U(t, t′) = I +
∑
n

(−i)n

n!

∫ t

t′
dt1 · · · dtnT (VW (t1) · · ·VW (tn)) (316)

where T is the time ordering operator. To use this in (315) let t → ∞, t′ → −∞ which

gives the following expression for the scattering operator

S = Ω†
+(H0 + Vs, H0)[I +

∑
n

(−i)n

n!

∫ ∞

−∞
dt1 · · · dtnT (VW (t1) · · ·VW (tn))]Ω−(H0 + Vs, H0)

(317)

The leading three terms in this perturbative series for the scattering operator are

S = Ω†
+(H0 + Vs, H0)Ω−(H0 + Vs, H0)

−i
∫ ∞

−∞
dt1Ω†

+(H0 + Vs, H0)Vw(t1)Ω−(H0 + Vs, H0)

−1
2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Ω†

+(H0 +Vs, H0)[VW (t1)VW (t2)θ(t1 − t2) +VW (t2)VW (t1)θ(t2 − t1)) + · · · ]

Ω−(H0 + Vs, H0). (318)

If we express this and expansions in eigenstates of H0 + Vs and use the representation for

the Heaviside function this becomes

θ(t) = 1
2πi

∫ ∞

−∞

dseist

s− iϵ+ (319)

S =∑
n

Ω†
+(H0 + Vs, H0)|n⟩⟨n|Ω−(H0 + Vs, H0)

−i
∑
nm

∫ ∞

−∞
dt1Ω†

+(H0 + Vs, H0)|n⟩ei(En−Em)t1⟨n|Vw|m⟩⟨m|Ω−(H0 + Vs, H0)

−1
2
∑
mnk

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Ω†

+(H0 +Vs, H0)|n⟩[⟨n|Vw|k⟩⟨k|Vw|m⟩ei(En−Ek)t1ei(Ek−Em)t2θ(t1−t2)+

⟨n|Vw|k⟩⟨k|Vw|m⟩ei(En−Ek)t2ei(Ek−Em)t1θ(t2 − t1) + · · · ]

⟨m|Ω−(H0 + Vs, H0) + · · · = (320)

S = Ω†
+(H0 + Vs, H0)Ω−(H0 + Vs, H0)

−i2πδ(Ef − Ei)Ω†
+(H0 + Vs, H0)VwΩ−(H0 + Vs, H0)]
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−1
2
∑
mnk

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∫ ∞

−∞
dsΩ†

+(H0 + Vs, H0)|n⟩[⟨n|Vw|k⟩⟨k|Vw|m⟩×

ei(En−Ek)t1ei(Ek−Em)t2 eis(t1−t2)

(2πi)(s− iϵ)

+⟨n|Vw|k⟩⟨k|Vw|m⟩ei(En−Ek)t2ei(Ek−Em)t1 eis(t2−t1)

(2πi)(s− iϵ)
]⟨m|Ω−(H0 + Vs, H0) + · · · = (321)

S = Ω†
+(H0 + Vs, H0)Ω−(H0 + Vs, H0)

−i2πδ(Ef − Ei)Ω†
+(H0 + Vs, H0)VwΩ−(H0 + Vs, H0)]

−2
2

(2π)2

2πi
∑
mnk

δ(En − Em)Ω†
+(H0 + Vs, H0)|n⟩[

⟨n|Vw|k⟩⟨k|Vw|m⟩
(2πi)(Ek − Em − iϵ)

Ω−(H0 + Vs, H0) (322)

S = Ω†
+(H0 + Vs, H0)Ω−(H0 + Vs, H0)

−i2πδ(Ef − Ei)Ω†
+(H0 + Vs, H0)VWΩ−(H0 + Vs, H0)]

−2πiδ(Ef − Ei)Ω†
+(H0 + Vs, H0)VW

1
Ei −H0 − Vs + iϵ

VWΩ−(H0 + Vs, H0) + · · · (323)

This is exactly the second Born approximation in the strongly interacting eigenstates.

For the multi-channel case it is enough to replace the two-body wave operators by the

channel wave operators

Sαβ =Ω†
α+(H0 + Vs,Φα, Hα)Ωβ−(H0 + Vs,Φβ, Hβ)

− i2πδ(Ef − Ei)Ω†
α+(H0 + Vs,Φα, Hα)VWΩβ−(H0 + Vs,Φβ, Hβ)

− 2πiδ(Ef − Ei)Ω†
α+(H0 + Vs,Φα, Hα)VW

1
Ei −H0 − Vs + iϵ

VWΩ−β(H0 + Vs,Φβ, Hβ) + · · ·

(324a)

(324b)

(324c)

XVI. FIELDS AND POTENTIALS

This section examines the case of electron scattering. The main purpose for considering

this example is that structurally it is similar to neutrino scattering. The main difference is

in the structure of the current operators and the exchange bosons. In this case there are 2

currents, an electron current, a strong current, and an exchanged photon.
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Using the two potential formulation - where the strong interaction is the strong nuclear

force and the weak interaction is the electromagnetic interaction. In the interaction picture

it has the form

VW (t) = ei(He+Hs+Hγ)te

∫
dx(Jµ

s (x, 0) + Jµ
e (x, 0)Aµ(x, 0))e−i(He+Hs+Hγ)t (325)

where Hs is the Hamiltonian for the strongly interacting system, He is the Hamiltonian

free electrons, and free photons without the electric current term. When these operators

are applied to the currents the current operators become Heisenberg picture operators with

respect to the strong interaction and QED. They are interaction picture operators when all

interactions are turned on. In what follows the weak interaction in the interaction picture is

VW (t) =
∫
dx(Jµ

s (x, t) + Jµ
e (x, t))Aµ(x, t) (326)

Using (318) the scattering operator to second order in VW (t) becomes

S = Ω†
+(Hs, H0)Ω−(Hs, H0) − ie

∫
d4xΩ†

+(Hs, H0)(Jµ
s (x) + Jµ

e (x))Aµ(x)Ω−(Hs, H0)

−e
2

2!

∫
d4x1d

4x2Ω†
+(Hs, H0)T [((Jµ

s (x1)+Jµ
e (x1))((Jν

s (x2)+Jν
e (x2))]T (Aµ(x1)Aν(x2))Ω−(Hs, H0)+· · ·

(327)

where the fact that the vector potential commutes with the currents was used in this ap-

proximation. This gives a photon propagator coupled to the time ordered product of the

currents. In this approximation the electron and strong currents commute, so the time

ordering does not affect the product of those currents.

If the initial state is a Deuteron and an electron, the initial wave operator is replaced by

the product of the Deuteron bound state wave function and the initial electron state. If the

final state is a Deuteron and an electron, the final wave operator is replaced by the product

of the Deuteron bound state wave function and the final electron state. If the final strong

state is np or npπ then the final strong state is the strong outgoing scattering state vector.

In this example the 0-th order term ignores the perturbative part of the interaction. It

involves just the strong interaction dynamics with the electron as a spectator.

The first order term is relevant for photo absorption, photoproduction or photo disin-

tegration. For these three cases the photon couples to the strong current, and Jµ
e (x) term

does not contribute.
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The second order term is relevant for electron scattering; elastic or electrodisintegration

in the one-photon exchange approximation. The discussion below is limited to that case. In

this approximation the electromagnetic interactions of the strong system with itself and the

electron with itself are ignored.

For electron scattering reactions the two terms in the interaction involving the product

of the electron and strong current operators Jµ
e (x) and Jν

s (y) are relevant. Again in this

approximation the electron current, strong current, and vector potential all commute so the

time ordering is only relevant for the photon propagator. The second order term for the

case of elastic scattering is

−e
2

2!

∫
d4x1d

4x2⟨p′
D, µ

′
D, D; p′

e, µ
′
e|(Jµ

s (x1)Jν
e (x2)+Jµ

e (x1)Jν
s (x2))T (Aµ(x1)Aν(x2))|pD, µD, D; pe, µe⟩

(328)

Since the photon propagator is symmetric under x1 ↔ x2 Using

⟨0|T (Aµ(x), Aν(y))|0⟩ = ⟨0|T (Aµ(y), Aν(x))|0⟩ = −iηµν
∫

d4k

(2π)4G(k)e−ik(x−y) G(k) = 1
k2 + iϵ

(329)

in the above gives

Sfi =

i
2e2

2

∫
d4x1d

4x2
d4k

(2π)4 ⟨p
′
D, µ

′
D, D|Jµ

s (x1)|D, |pD, µD⟩e−ik(x1−x2) ηµν
k2 + iϵ

⟨p′
e, µ

′
e|Jν

e (x2)|pe, µe⟩ =

ie2

(2π)4

∫
d4x1d

4x2d
4k⟨p′

D, µ
′
D, D|Jµ

s (0)||pD, µD, D⟩ei(p′s−pD)·x1ei(pe′−pe)·x2e−ik(x1−x2)×

ηµν
k2 + iϵ

⟨p′
e, µ

′
e|Jν

e (0)|pe, µe⟩ =

ie2(2π)4δ4(p′D +p′e−pe−pD)⟨p′
D, µ

′
D, D|Jµ

s (0)|pD, µD, D⟩ ηµν
(p′e − pe)2 + iϵ

⟨p′
e, µ

′
e|Jν

e (0)|pe, µe⟩

(330)

This is the dynamical contribution to the scattering matrix

We can read off the transition matrix elements (270), with the momentum conserving

delta functions factored out like (281). It is the coefficient of −2πiδ4(p′D + p′e − pe − pD)

⟨p′
D, µ

′
D, D,p′

e, µ
′
e|T |pD, µD, D,pe, µe⟩ =

−e2(2π)3⟨p′
D, µ

′
D, D|Jµ

s (0)|ΦD|pD, µD, D⟩ ηµν
(p′e − pe)2 + iϵ

⟨p′
e, µ

′
e|Jν

e (0)|pe, µe⟩ (331)

The expression for the differential cross section in terms of (331) is

dσ = (2π)4ωmD
(pD)ωme(pe)√

(pD · pe)2 −m2
Dm

2
e

|⟨p′
D, µ

′
D, D,p′

e, µ
′
e|T |pD, µD, D,pe, µe⟩|2×
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ωmD
(p′

D)ωme(p′
e)δ4(pD + pe − P ′

D − p′e)
dpD

ωmD
(pD)′

dpe

ωme(p′
e)

(332)

This is product of the following three covariant parts

(2π)4√
(pD · pe)2 −m2

Dm
2
e

(333)

ωmD
(pD)ωme(pe)|⟨p′

D, µ
′
D, D,p′

e, µ
′
e|T |pD, µD, D,pe, µe⟩|2ωmD

(p′
D)ωme(p′

e) (334)

δ4(pD + pe − P ′
D − p′e)

dp′
D

ωmD
(p′

D)
dp′

e

ωme(p′
e)

(335)

so it can be easily computed in any frame of reference. Next consider the computation of

the elements of the transition matrix element.

Note from (186) the electron current matrix elements can be expressed in term of Dirac

spinors

⟨p′
e, µ

′
e|Jν

e (0)|pe, µe⟩ = 1
(2π)3

√
m2

e

ωme(pe)ωme(p′
e)
ūe(p′

e, µ
′
e)γνue(pe, µ3) (336)

here we use the normalization (141) on the Dirac spinors, ū(p)u(p) = σ0.

The other element is the Deuteron current matrix elements.

⟨p′
D, µ

′
D, D|Jµ

s (0)|pD, µD, D⟩ (337)

The formal structure of the matrix element is∫
⟨p′, D|p′′′,k′; ⟩dp′′′dk′⟨p′′′,k′|p′

1,p′
2⟩dp′

1, dp′
2×

[δ(p′
1 − p1)⟨p′

2|J
µ
2 (0)|p2⟩ + δ(p′

2 − p2)⟨p′
1|J

µ
1 (0)|p1⟩]dp1dp2⟨p1,p2|p′′,k⟩dp′′dk⟨p′′,k|D,p⟩

(338)

This expression has 7 delta functions and 8 integration variables. We want to use the

following sequence of delta functions∫
δ(p′ − p′′′)dp′′′dk′δ(k′ − k′(p′′′

1 ,p′′′
2 ))δ(p′′′ − p′

1 − p′
2)dp′

1dp′
2(δ(p′

2 − p2) + δ(p′
1 − p1))×

dp1dp2δ(p1 − p1(p′′,k))δ(p2 − p2(p′′,k))δ(p′′ − p)dp′′dk1 (339)

What remains, after integrating over all of these delta functions, in addition to the kinematic

constraints, is the integral over the initial proton rest momentum, k1. The choices of delta

functions fix the Jacobians that appear in the current Recall that

⟨p1,p2|P,k⟩ =
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δ(P − p1 − p2)δ(k − k(p1p2))

√
ωm1(k1)ωm2(k2)
ωm1(p1)ωm2(p2)

√
ωM0(P)
M0

=

δ(p1 − p1(P,k))δ(p2 − p2(P,k))

√
ωm1(p1)ωm2(p2)
ωm1(k1)ωm2(k2)

√
M0

ωM0(P)
(340)

we are now in a position to write down the formula for the proton current in the Deuteron.

There will be a similar expression for the neutron current, it will have different spectator

constraint

⟨p′, µ′, D|Jν
s (0)|p, µ,D⟩ =∫

dkp

∑
ϕj=1∗
D,l′,s′=1(k

′)Y l′∗
m′ (k(p′

1,p′
2)C(j, l′, s′|µ′,m′,m′

12)C(s′, 1
2
,
1
2
,m′

12, µ
′
1, µ

′
2)

D
1/2
µ′

1µ
′′′
1

[B−1
c (k′

1/m1)B−1
c (p/M0)Bc(p′

1/m1)]D1/2
µ′

2µ
′′′
2

[B−1
c (k′

2/m2)B−1
c (p′/M ′

0)Bc(p2/m2)]√
ωm1(k′

1)ωm2(k′
2)

ωm1(p′
1)ωm2(p2)

√
ωM0(p′)
M ′

0

√
ωm1(p1)ωm2(p2)
ωm1(k1)ωm2(k2)

√
M0

ωM0(p)
×

⟨p′
1, µ

′′′
1 |Jν

1 (0)p1, µ
′′
1⟩δµ′′′

2 µ′′
2

D
1/2
µ′′

1µ1
[B−1

c (p1/m1)Bc(p/M0)Bc(k1/m1)]D1/2
µ′′

2µ2
[B−1

c (p2/m2)Bc(p/M0)Bc(k2/m2)]×

C(s, 1
2
,
1
2
,m12, µ1, µ2)C(j, l, s|µ,m,m12)Y l

m(k(p1,p2)ϕj=1
D,l′,s′=1(k)+

particle 1 spectator terms + 2 body terms (341)

In this expression all variables are expressed in terms of k1 (the integration variable), the

initial Deuteron momentum p, and the momentum q transferred to the Deuteron from the

electron.

p′ = p + q (342)

p1 = p1(p,k1) (343)

p2 = p − p1 (344)

p′
2 = p2 (345)

p′
1 = p′ − p′

2 = p + q − p2 = p1 + q (346)

when the proton is spectator then

p′
2 = p2 → p′

1 = p1 (347)
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What remains is the single nucleon current matrix element

⟨p′, µ′|Jν(0)|p, µ⟩ =

1
(2π)3

√
m2

ωm(p′)ωm(p)
ū(p′, µ′)

(
γµF1(Q)2 + i

(p′α − pα)σµα

2m
F2(Q2)

)
u(p, µ) (348)

where F1 and F2 are the Dirac nucleon form factors

For electro-disintegration the final deuteron wave function is replaced by an outgoing

scattering wave function.

It that is solved in partial waves like the deuteron bound state wave function the solution

will have the form

⟨k+, j, l, s|k′, j′, l′, s′⟩δ(p − p′) =
δ(k − k′)

k2 δ(p − p′)δµµ′δll′δss′δjj′+

δ(p − p′)δjj′
⟨k′, l′, s′|T j|k, l, s⟩

ωm1(k1) + ωm2(k2) − ωm1(k′
2) − ωm1(k′

1) + i0+ (349)

which replaces the deuteron wave function. This can be converted to single particle variables

using (295).

XVII. BREAKUP

For electrodisintegration the final deuteron state is replaced by an outgoing wave scatter-

ing state. This appears in the current matrix element. It is normally treated using partial

waves. Both the arguments and variables need to be converted to single particle degrees of

freedom.

What is needed is the following

⟨(p′
1, µ

′
1, τ

′
1p′

2, µ
′
2, τ

′
2)+|(p1, µ1, τ1,p2, µ2, τ2⟩ =

δ(p′
1 − p1)δµ′

1µ1δτ ′1τ1δ(p′
2 − p2)δµ′

2µ2δτ ′1τ1+

⟨p′
1, µ

′
1, τ

′
1,p′

2, µ
′
2, τ

′
2∥T∥p1, µ1, τ1,p2, µ2, τ2⟩δ(p′

1 + p′
2 − p1 − p2)

ωm1(p′
1) + ωm2(p′

2) − ωm1(p1) − ωm2(p2) − iϵ
(350)

The first term (??) gives the born term. The second term has all of the final state interaction

contributions. This replaces

⟨ϕdP, µ, |(p1, µ1, τ1,p2, µ2, τ2⟩ (351)

60



in the expression (??) for the current matrix elements. In this case the dynamical part has

to be expressed in terms of partial waves. This term has the structure∫
⟨p′

1, µ
′
1, τ

′
1,p′

2, µ
′
2, τ

′
2|(k′, j),P, µ, l′, s′, τ ′, µ′

τ ⟩dPk′2dkdP×

⟨k′, l′, s′, τ ′, τ ′z∥T j∥k, l, s, τ, τz⟩
ωm1(k′

1) + ωm2(k′
2) − ωm1(k1) − ωm2(k2) − iϵ

k2dk×

⟨(k, j),P, µ, l, s, τ, τz|p1, µ1, τ1,p2, µ2, τ2⟩ (352)

The coefficient (295) has delta function in both P, k and k′, which means that they can be

expressed in terms of the external momenta - this means that the second term is

⟨p′
1, µ

′
1, τ

′
1,p′

2, µ
′
2, τ

′
2∥T∥p1, µ1, τ1,p2, µ2, τ2⟩

ωm1(p′
1) + ωm2(p′

2) − ωm1(p1) − ωm2(p2) − iϵ
=

√
ωm1(k′

1)ωm2(k′
2)

ωm1(p′
1)ωm2(p′

2)

√
ωM ′

0
(P′)
M ′

0
×

D
1/2
µ′

1µ
′′′
1

[B−1
c (p′1/m′

1)Bc(P ′/M ′
0)Bc(k1/m1)]D1/2

µ′
2µ

′′′
2

[B−1
c (p′2/m′

2)Bc(P ′/M ′
0)Bc(k′2/m)]×

Y l′

m′(k̂′
1)C(s′, 1

2
,
1
2

;µ′′′
1 , µ

′′′
2 ,m

′′′
s )C(j, l′, s′;µ,ml,ms′′′C(τ, 1

2
,
1
2

; τ ′1, τ ′2, τ ′z)×

⟨k′, l′, s′, τ ′, τ ′z∥T j∥k, l, s, τ, τz⟩
ωm1(k′

1) + ωm2(k′
2) − ωm1(k1) − ωm2(k2) − iϵ

×

Y l∗
m (k̂1)C(τ, 1

2
,
1
2

; τ1, τ2, τz)C(j, l, s;µ,m′′
l ,m

′′
s)C(s, 1

2
,
1
2

;µ′′
1, µ

′′
2,m

′′
s)

D
1/2
µ′′

1µ1
[B−1

c (k1/m1)B−1
c (P/M0)Bc(p1/m1)]D1/2

µ′′
2µ2

[B−1
c (k2/m2)B−1

c (P/M0)Bc(p2/m)]×√
ωm1(k1)ωm2(k2)
ωm1(p1)ωm2(p2)

√
ωM0(P)
M0

(353)

XVIII. COMPARISON WITH THE PARTICLE DATA BOOK CONVENTIONS

Starting with the relation of my transition matrix elements to the scattering matrix

elements

S = I − i(2π)Tfiδ4(p1 + p2 − p′1 − p′2) (354)

and these transition matrix elements to the differential cross section

dσ = (2π)4ωm1(p1)ωm2(p2)√
(p1 · p2)2 −m2

1m
2
2
|Tfi|2δ(p1 + p2 − p′2 − p′2)d3p1d

3p2 = (355)
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I multiply by 1:

(2π)4√
(p1 · p2)2 −m2

1m
2
2
E1E2|Tfi|2ωm1(p′

1)ωm2(p′
2)δ(p1 + p2 − p′2 − p′2)

d3p′1
ωm1(p′

1)
d3p′2

ωm2(p′
2)

=

(2π)4

4
√

(p1 · p2)2 −m2
1m

2
2
2ωm1(p1)2ωm2(p2)|Tfi|22ωm21(p′

1)′2ωm2(p′
2)×

δ(p1 + p2 − p′2 − p′2)
d3p′1

2ωm1(p′
1)

d3p′2
2ωm2(p′

2)
=

(2π)4

4
√

(p1 · p2)2 −m2
1m

2
2
(2π)62ωm1(p1)2ωm2(p2)|

Tfi
(2π)3 |

2(2π)62ωm1(p′
1)2ωm2(p′

2)×

δ(p1 + p2 − p′2 − p′2)
d3p′1

(2π)32ωm1(p′
1)

d3p′2
(2π)32ωm2(p′

2)
= (356)

Comparing to 48.27 in the 2020 particle data book the gives the following relation to my

Tfi.

The factors of (2π)3/2 disappear if we assume the PDB normalization

⟨p′|p⟩ = (2π)3δ3(p′ − p) (357)

then we get

Mfi =
√

2ωm1(p′
1)(2π)3/2

√
2ωm2(p′

2)(2π)3/2 Tfi
(2π)3

√
2ωm1(p1)(2π)3/2

√
2ωm2(p2)(2π)3/2

(358)

The factor of (2π)3 in the denominator is because I use

S = I − 2πiδ4(pf − pi)Tfi (359)

while PDB uses

S = I − (2π)4iδ4(pf − pi)Tfi pdb (360)

(2π)3Tfi pdb = Tfi (361)

This shows that my conventions are consistent with the PBD conventions.

For the cross section in terms of the currents matrix elements

|Tfi|2 = (2π)3e2

(p′e − pe)2 + i0
⟨i|Jµ

s (0)|f⟩⟨f |Jν
s (0)|i⟩ (2π)3e2

(p′e − pe)2 − i0
⟨i|Je µ(0)|f⟩⟨f |Je ν(0)|i⟩ (362)

Using

⟨p′, µ′|Jν(0)|p, µ⟩ =
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1
(2π)3

√
m2

ωm(p′)ωm(p)
ū(p′, µ′)

(
γµF1(Q2) + i

(p′α − pα)σµα

2m
F2(Q2)

)
u(p, µ) (363)

and

⟨p′, µ′|Jν(0)|p, µ⟩ =

1
(2π)3

√
m2

ωm(p′)ωm(p)
ū(p′, µ′)γµu(p, µ) (364)

|Tfi|2 = m2e2

(2π)3(p′e − pe)2 + i0
1

(2π)3

√
m2

ωm(p′)ωm(p)
×

ū(p′, µ′)
(
γµF1(Q)2 + i

(p′α − pα)σµα

2m
F2(Q2)

)
u(p, µ)

1
(2π)3

√
m2

ωm(p′)ωm(p)
ū(p′, µ′)

(
γµF1(Q)2 + i

(p′α − pα)σµα

2m
F2(Q2)

)
u(p, µ)

⟨i|Jµ
s (0)|f⟩⟨f |Jν

s (0)|i⟩ (2π)3e2

(p′e − pe)2 − i0

1
(2π)3

√
m2

ωm(p′)ωm(p)
ū(p′, µ′)γµ 1

(2π)3

√
m2

ωm(p′)ωm(p)
ū(p′, µ′)γµ

⟨i|Je µ(0)|f⟩⟨f |Je ν(0)|i⟩ (365)

XIX. CROSS SECTION IN TERMS OF STRUCTURE TENSORS

We start with the expression (302) for the differential cross section for the case n = 2,

b = e

dσ = (2π)4ωb(pb)ωt(pt)√
(pt · pe)2 −m2

em
2
t

|⟨p′
e, µ

′
e,p′

t, µ
′
t∥Tαβ∥p̄e, µe, p̄t, µt⟩|2δ4(pe + pt − p′e − p′t)dp′

1dp′
1.

(366)

Using the expression (331) for ⟨p′
1, µ

′
1,p′

2, µ
′
2∥Tαβ∥p̄b, µb, p̄t, µt⟩ based in the two potential

formalism gives

dσ = (2π)4ωe(pe)ωt(pt)√
(pt · pe)2 −m2

em
2
t

×

|(−e2(2π)3⟨p′
t, µ

′
t, t|J

µ
t (0)|Φt|pt, µt, t⟩

ηµν
(p′e − pe)2 + iϵ

×

⟨p′
e, µ

′
e|Jν

e (0)|pe, µe⟩)|2δ4(pe + pt − p′e − p′t)dp′
edp′

t = . (367)
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Using the expression of the electron current matrix elemets (336)

dσ = (2π)4ωe(pe)ωt(pt)√
(pt · pe)2 −m2

em
2
t

×

|(−e2(2π)3⟨p′
t, µ

′
t, t|J

µ
t (0)|Φt|pt, µt, t⟩

ηµν
(p′e − pe)2 + iϵ

×

1
(2π)3

√
m2

e

ωme(pe)ωme(p′
e)
ūe(p′

e, µ
′
e)γνue(pe, µ3)|2δ4(pe + pt − p′e − p′t)dp′

edp′
t =

(2π)4ωt(pt)√
(pt · pe)2 −m2

em
2
t

e4

(q2)2
m2

e

ωe(p′
e)

⟨p′
t, µ

′
t, t|J

µ
t (0)|Φt|pt, µt, t⟩⟨pt, µt, t|Jν

t (0)|Φt|p′
t, µ

′
t, t⟩×

ūe(p′
e, µ

′
e)γµue(pe, µe)ūe(pe, µe)γνue(p′

e, µ
′
e)δ4(pe + pt − p′e − p′t)dp′

edp′
t = (368)

If we sum over final electron spins and average over initial electron spins using (385)

= (2π)4ωt(pt)√
(pt · pe)2 −m2

em
2
t

e4

(q2)2
m2

E

ωe(p′
e)

⟨p′
t, µ

′
t, t|J

µ
t (0)|Φt|pt, µt, t⟩⟨pt, µt, t|Jν

t (0)|Φt|p′
t, µ

′
t, t⟩×

1
2m2

e

(p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν)δ4(pe + pt − p′e − p′t)dp′
edp′

t)

= 1
2

(2π)4√
(pt · pe)2 −m2

em
2
t

e4

(q2)2
ωt(pt)
ωe(p′

e)

⟨p′
t, µ

′
t, t|J

µ
t (0)|Φt|pt, µt, t⟩⟨pt, µt, t|Jν

t (0)|Φt|p′
t, µ

′
t, t⟩×

(p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν)δ4(pe + pt − p′e − p′t)dp′
edp′

t =)

= 1
2

(2π)4√
(pt · pe)2 −m2

em
2
t

e4

(q2)2√
ωt(p′

t)⟨p′
t, µ

′
t, t|J

µ
t (0)|Φt|pt, µt, t⟩

√
ωt(pt)

√
ωt(pt)⟨pt, µt, t|Jν

t (0)|Φt|p′
t, µ

′
t, t⟩
√
ωt(p′

t)×

(p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν)δ4(pe + pt − p′e − p′t)
dp′

e

ωe(p′
e)

dp′
t

ωt(p′
t)

) (369)

If we sum over the final target spins and average over the initial target spins, and replaceing

the delta function by its integral representation

= 1
2nt

1√
(pt · pe)2 −m2

em
2
t

e4

(q2)2∫
d4xei(pe−p′e)·x

∑
µtµ′

t

√
ωt(p′

t)⟨p′
t, µ

′
t, t|J

µ
t (x)|Φt|pt, µt, t⟩

√
ωt(pt)×
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√
ωt(pt)⟨pt, µt, t|Jν

t (0)|Φt|p′
t, µ

′
t, t⟩
√
ωt(p′

t)×

(p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν) dp′
e

ωe(p′
e)

dp′
t

ωt(p′
t)

) (370)

Using the definition of the structure tensor (??) the unpolarized differential cross section is

dσ = 1
16π2

√
(pt · pe)2 −m2

em
2
t

e4

(q2)2

W µν(pt, q)(p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν) dp′
e

ωe(p′
e)

dp′
t

ωt(p′
t)

) =

1√
(pt · pe)2 −m2

em
2
t

α2

(q2)2

W µν(pt, q)(p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν) dp′
e

ωe(p′
e)

dp′
t

ωt(p′
t)

) (371)

where

W µν(pt, q) = 2(2π)2

nt

∫
eiq·x

√
ωmt(pt)

∑
µt

⟨Φt,pt, µt, t|Jµ
t (x)|Φt,p′

t, µt, t⟩⟨Φt,p′
t, µt, t|Jν

t (0)]|Φt,pt, µt⟩
√
ωmt(pt)

(372)

where p′t = pt + q

(this follows Itzykson and Zuber - converting to delta function normalization)

XX. INCLUSIVE SCATTERING

In inclusive scattering the starting point is the expression for the cross section. In this

case there is a sum over all final hadronic states; all that is measured are the state of the

initial and final electron and the initial target hadron. The final hadronic momenta and

spins are summed. The differential cross section has the standard form

dσ =
∫

(2π)4ωmD
(p1)ωm2(p2)√

(p1 · p2)2 −m2
1m

2
2
|Tfi|2δ4(pD + pe − p′e −

∑
n

p′n)d3p′ed
3p′1 · · · d3p′N (373)

where for inclusive scattering the integral and spin sums are over the final hadronic states.

The dynamical contributions to cross section have the form

|Tfi|2δ4(pD + pe − p′e −
∑
n

p′n)d3p′ed
3p′1 · · · d3p′N =

e4(2π)6⟨ΦD,pD, µD, D|Jµ
s (0)|p′

1, µ
′
1, · · · ,p′

N , µ
′
N⟩⟨p′

1, µ
′
1, · · · ,p′

N , µ
′
N |Jν

s (0)|ΦD,pD, µD⟩×

65



δ4(pD + pe − p′e −
∑

n p
′
n)d3p′ed

3p′1 · · · d3p′N
((p′e − pe)2 + iϵ)((p′e − pe)2 − iϵ)

×

⟨pe, µe|Jeµ(0)|p′
e, µ

′
e⟩⟨p′

e, µ
′
e|Jeν(0)|pe, µe⟩. (374)

where e2 = 4πα. It is useful to replace the energy-momentum conserving delta function by

its Fourier representation

δ4(pD + pe − p′e − p′f ) = 1
(2π)4

∫
d4xei(pD+pe−p′e−

∑
n p′n)·x. (375)

With this replacement∫
⟨ΦD,pD, µD, D|Jµ

s (0)|p′
1, µ

′
1, · · · ,p′

N , µ
′
N⟩⟨p′

1, µ
′
1, · · · ,p′

N , µ
′
N |Jν

s (0)|ΦD,pD, µD⟩×

δ4(pD + pe − p′e −
∑

n p
′
n)d3p′ed

3p′1 · · · d3p′N
((p′e − pe)2 + iϵ)((p′e − pe)2 − iϵ)

×

⟨pe, µe|Jeµ(0)|p′
e, µ

′
e⟩⟨p′

e, µ
′
e|Jeν(0)|pe, µe⟩ =

⟨ΦD,pD, µD, D|Jµ
s (x)Jν

s (0)|ΦD,pD, µD⟩×
d4x

(2π)4((p′e − pe)2 + iϵ)((p′e − pe)2 − iϵ)
×

ei(pe−p′e)·x⟨pe, µe|Jeµ(0)|p′
e, µ

′
e⟩d3p′e⟨p′

e, µ
′
e|Jeν(0)|pe, µe⟩ (376)

We remark that the quantity with x in the final term arises from the integral represen-

tation of the delta function

⟨ΦD,pD, µD, D|Jµ
s (x)|p′

1, µ
′
1, · · · ,p′

N , µ
′
N⟩ =

⟨ΦD,pD, µD, D|eipxJµ
s (0)e−ipx|p′

1, µ
′
1, · · · ,p′

N , µ
′
N⟩ =

eipDx⟨ΦD,pD, µD, D|Jµ
s (0)|p′

1, µ
′
1, · · · ,p′

N , µ
′
N⟩e−ip′Nx′ (377)

⟨ΦD,pD, µD, D|Jµ
s (0)Jν

s (x)|ΦD,pD, µD⟩ = (378)

Here the electron momenta and initial deuteron momenta are fixed by experiment. In the

lab frame the deuteron is at rest. If there is any momentum transfer the initial electron

looses momentum on collision, which means that the final electron has less energy (in the

lab frame) than the initial electron. In this case the energy of the final hadrons and initial

electron in the lab frame is greater than the sum of the energy of the final electron and

initial target. This means that this delta function vanishes. It follows that

⟨ΦD,pD, µD, D|Jµ
s (0)Jν

s (x)|ΦD,pD, µD⟩ = 0 (379)
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and

⟨ΦD,pD, µD, D|Jµ
s (x)Jν

s (0)|ΦD,pD, µD⟩ =

⟨ΦD,pD, µD, D|[Jµ
s (x), Jν

s (0)]|ΦD,pD, µD⟩. (380)

The only time it can contribute is when there is no energy or momentum transfer and the

final state is identical to the intitial state. Note that the four dimensional delta function is

invariant which means that if it vanishes in the lab frame it vanishes everywhere.

Putting everything together the expression for the differential cross section becomes

dσ =
∫

(2π)6ωmD
(pD)ωme(pe)√

(pD · pe)2 −m2
Dm

2
e

(e
2

q2 )2
∫
d4x×

⟨ΦD,pD, µD, D|[Jµ
s (x), Jν

s (0)]|ΦD,pD, µD⟩×ei(pe−p′e)·x⟨pe, µe|Jeµ(0)|p′
e, µ

′
e⟩d3p′e⟨p′

e, µ
′
e|Jeν(0)|pe, µe⟩d3p′e.

(381)

Using the expression

⟨p′
e, µ

′
e|Jeµ(0)|pe, µe⟩ =

1
(2π)3

√
m2

e

ωm(p′
e)ωm(p)

ū(p′e, µ′
e)γµu(p3, µe)

gives

ei(pe−p′e)·x⟨pe, µe|Jeµ(0)|p′
e, µ

′
e⟩d3p′e⟨p′

e, µ
′
e|Jeν(0)|pe, µe⟩d3p′e =

ei(pe−p′e)·x m2
e

(2π)6ωme(pe)ωme(p′
e)
ū(pe, µe)γµu(p′e, µ′

e)ū(p′e, µ′
e)γνu(pe, µe). (382)

The expression for the cross section becomes

dσ = ωmD
(pD)√

(pD · pe)2 −m2
Dm

2
e

(mee
2

q2 )2
∫
d4x×

⟨ΦD,pD, µD, D|[Jµ
s (x), Jν

s (0)]|ΦD,pD, µD⟩×

ei(pe−p′e)·xū(pe, µe)γµu(p′e, µ′
e)ū(p′e, µ′

e)γνu(pe, µe)
d3p′e

ωme(p′
e)

(383)

Summing over the final electron spins, µ′
e gives∑

µ′
e

ū(pe, µe)γµu(p′e, µ′
e)ū(p′e, µ′

e)γνu(pe, µe) =

ū(pe, µe)γµ
m+ p′e · γ

2m
γνu(pe, µe) (384)
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Averaging over the initial electron spins gives

→ 1
2
∑

γµ
me + p′e · γ

2me

γνu(pe, µe)ū(pe, µe) = 1
8m2

e

Tr (γµ(me + p′e · γ)γν(me + pe · γ)) =

(385)

1
8

Tr(γµγν) + 1
8m2

e

Tr(γµ(p′e · γ)γν(pe · γ))

Because the γ’s anticommute with γ5 the trace of the product of one or three gamma matrices

vanishes.
1

2m2
e

(p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν)

Inserting this in the expression for the inclusive spin averaged differential cross section and

also average over deuteron spins

dσ = 1
2
√

(pD · pe)2 −m2
Dm

2
e

(4πα
q2 )2×

∫
d4xei(pe−p′e)·x

√
ωmD

(pD)1
3
∑
µD

⟨ΦD,pD, µD, D|[Jµ
s (x), Jν

s (0)]|ΦD,pD, µD⟩
√
ωmD

(pD)×

(
m2

eηµν + (p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν)
) d3p′e
ωme(p′

e)
(386)

Each term in this expression is Lorentz covariant. The integral is the Fourier transform

of the current commutator term that depends on the momentum transfer and the initial

deuteron momentum. The factors 1/2 and 1/3 are due to the spin averaging.

Measuring the final electron energy gives the phase space factor

d3p′e = p′2e
dp′e

dωme(p′e)
d2Ω′

2dE
′
e = p′eωme(p′e)d2Ω′

edE
′
e

The differential cross section becomes

dσ

dE ′
ed

2Ω′
e

= 1
2
√

(pD · pe)2 −m2
Dm

2
e

(4πα
q2 )2×∫

d4xei(pe−p′e)·x
√
ωmD

(pD)1
3
∑
µD

⟨ΦD,pD, µD, D|[Jµ
s (x), Jν

s (0)]|ΦD,pD, µD⟩
√
ωmD

(pD)×

(
m2

eηµν + (p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν)
) p′eωme(p′

e)
ωme(p′

e)
(387)

We can identify the terms in this expression with standard definitions of the deuteron

structure function and leptonic structure function:
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The only tricky parts are the normalizations. Using Itzykson-Zuber (13.101) with their

normalization - converting to my normalization gives the following definition of the structure

function

Wµν(p, q) := (2π)3

3 · 2π

∫
eiq·x

√
2ωmD

(pD)
∑
µD

⟨ΦD,pD, µD, D|[Jµ
s (x), Jν

s (0)]|ΦD,pD, µD⟩
√

2ωmD
(pD)

(2π)22
3

∫
eiq·x

√
ωmD

(pD)
∑
µD

⟨ΦD,pD, µD, D|[Jµ
s (x), Jν

s (0)]|ΦD,pD, µD⟩
√
ωmD

(pD)

(for protons 1/3 → 1/2) and

Lµν :=
(
m2

eηµν + (p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν)
)

(388)

with this definition the expression for the cross section becomes

dσ

dE ′
ed

2Ω′
e

= 1
2
√

(pD · pe)2 −m2
Dm

2
e

(4πα
q2 )2×∫

d4xei(pe−p′e)·x
√
ωmD

(pD)1
3
∑
µD

⟨ΦD,pD, µD, D|[Jµ
s (x), Jν

s (0)]|ΦD,pD, µD⟩
√
ωmD

(pD)×

(
m2

eηµν + (p′eµpeν + peµp
′
eν + (m2

e − pe · p′e)ηµν)
) p′eωme(p′

e)
ωme(p′

e)
(389)

dσ

dE ′d2Ω′
e

= p′e

2(2π)2
√

(pD · pe)2 −m2
Dm

2
e

(4πα
q2 )2W µν(q, pD)Lµν

2p′e√
(pD · pe)2 −m2

Dm
2
e

( α
q2 )2W µν(q, pD)Lµν (390)

XXI. TWO-BODY CURRENTS

There are several sources of two-body currents. Both current conservation and current

covariance cannot be satisfied in an interacting theory without two-body currents. These

come from current conservation and the commutation relations with the boost generators

ηµν [P µ, Jν ] = 0

[Ki, J j] = iδijJ
0 [Ki, J0] = iδijJ

i

where P 0 = H and K include interactions in the instant form.
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These equations formally allow one to construct the current from the charge density and

the boost generators, but this requires an explicit representation of the boost and the charge

density operator (which means all matrix elements of the charge operator are needed).

In addition to this kind of two-body current there are dynamical processes. For example

a virtural charged exchanged π could couple to a photon producing virtual rho. Another

process would be a excitation of a virtual nucleon-antnucleon pair coupling to an exchanged

pion.

Including these few body currents does not guarantee current conservation or current

covariance.

In the instant form of the dynamics current matrix elements in a given pair of frames

related by Λ, ⟨ψf |U †
s (Λ)Jµ(0)|ψi⟩ are rotationally covariant. Boost covariance and current

conservation of the matrix elements in a given pair of frames can be used to generate

matrix elements in other frames that are consistent with a subset of conserved covariant

currents (this does not fix current matrix elements where the initial and/or final states have

a different particle content). The conserved covariant current matrix elements generated this

way assume that the matrix elements in the initial pair of frames are correct. If we repeat

this process with a different pair of frames, these is no reason to expect that the current

matrix elements generated in these frames would be the same as the ones generated in the

other pair of frames. In general many different currents are compatible with covariance and

current conservation. If the differences vanish that means that the currents are consistent -

but not necessarily correct.

The most straightforward strategy is to construct a model with rotationally covariant

current matrix elements in a given pair of frames and generate the current matrix elements

in other frames using covariance and current conservation of the matrix elements.

In what follows I discuss the structure of a rotationally covariant two-body pair current.

I use a generic frame - but in order to define a model it is necessary to pick a pair of frames

that will be used to define all of the matrix elements.

Formally the covariance condition is

⟨(mf , sf )pf , ν ′f |Jµ′(0)|(mi, si)pi, ν ′i⟩ =

Λµ
µ′⟨(mf , sf )pref−f , ν

′
f |Jµ(0)|(mi, si)pref−i, ν

′
i⟩×
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Dsi
ν′iνi

[B−1(pref−i)Λ−1B(pi)]D
sf
ν′fνf

[B−1(pref−f )Λ−1B(pf )]

√
ei(pref−i)ef (pref−f )

ei(pi)ef (pf )

where p = Λpref . These equations define general matrix elements in terms of reference

matrix elements. Covariance is compatible with current conservation so if the reference

matrix elements satisfy current conservation the transformed matrix elements will also satisfy

current conservation.

To construct dynamical two-body currents it is sufficient to construct a rotationally co-

variant set of matrix elements of the dynamical current in a reference pair of frames which

can be used to generate consistent matrix elements is any pair of frames related by boosts.

Below I construct a “pair current” which was an important contribution to elastic-electron

deuteron scattering using light front dynamics.

To motivate the structure of two-body current start with the two-potential formalism

where H = H1 + V and V is small. The scattering operator has the form

S = Ω†
s+[I +

∞∑
n=1

(−i)n

n!
T (V (t1) · · ·V (tn))]Ωs− =

I − 2πiδ(Ef − Ei)Tf (391)

Here we assume that Ωs± has only nucleon and electron creation and annihilation operators.

It is assumed to be the product of free electron states and eigenstates of a relativistic nu-

clear Hamiltonian with a realistic nucleon-nucleon interaction, having the operator structure

a†Na
†
NaNaNa

†
eae (no nucleon antiparticle creation or annihilation operators). The perturba-

tion V includes the current operators and the part of the pion-nucleon vertex that involves

at least one antiparticle creation or annihilation operator. We write this as V1 + V2 where

V1 is the sum of the electron and nucleon current operators

V1(t) = e

∫
d3xe(: Ψ̄n(x)ΓµΨn(x) : + : Ψ̄e(x)γµΨe(x) :)Aµ(x) (392)

and V2 is the part of the pseudoscalar pion-nucleon interaction involving antiparticle creation

and annihilation operators

V2(t) = −i fπ
mπ

∫
d3x[: Ψ̄(x)γ5τττ · ϕϕϕ(x)Ψ(x) :]b (393)

(the part involving only nucleon creation and annihilation operators is assumed to be in-

cluded in the initial and final states). To be consistent with the dynamical model the
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one-pion exchange potential that appears in the current should be replaced by the one-pion

exchange part of the Argonne V18 potential.

Note that these calculations are for the S operator which has an energy conserving delta

function. The transition operator and potential do not conserve energy on their own - that

comes from the time limit that is used to compute the scattering operator. When there is an

energy dependence the single-nucleon momenta will be put on shell. This is a prescription

rather than a theoretical consequence.

The starting point is to use the pseudoscalar pi-nucleon vertex.

The fields that appear in the vertex and the expressions that will be derived have the

following representations in terms of delta function normalized creation and annihilation

operators:

Aµ(x) =
∫

1
(2π)3/2

1√
2ω(k)

ϵµ(k, λ)
(
e−ikxaγ(k, λ)ϵµ(k, λ) + eikxa†γ(k, λ)ϵ∗µ(k, λ)

)
(394)

Ψ(x) =
∫

dp
(2π)3/2

√
m

ω(p)

(
aN(p, µ)u(p, µ)e−ip·x + b†N(p, µ)v(p, µ)eip·x

)
(395)

and

ϕϕϕ(x) =
∫

d3p

(2π)3/2

√
1

2ω(p)
(
e−ip·xaπ(p) + eip·xa†

π(p)
)
. (396)

The “pair contribution” to the scattering operator due to the two-body current appears

at fourth order in this series (391). The relevant contractions have the following structure

1
4!

∫
d4x1d

4x2d
4x3d

4x4[e : Ψ̄n(x1)ΓµΨn(x1)Aµ(x1) :][e : Ψ̄e(x2)γνΨe(x2)Aν(x2) :]×

[−i fπ
mπ

: Ψ̄n(x3)γ5τττ ·ϕϕϕ(x3)Ψn(x3) :][−i fπ
mπ

: Ψ̄n(x4)γ5τττ ·ϕϕϕ(x4)Ψn(x4) :]+permutations. (397)

Here there is one nucleon current operator, one electron current operator and two pi-nucleon

current vertices. There are terms corresponding to each of the 4! permutations of the

coordinates xi which lead to 4! identical integrals, so it is enough to evaluate one of the

4! terms and eliminate the factor 1/4!. This results in the following pairings where the

unpaired fields will couple to the external electron or nucleon states:

−e2( fπ
mπ

)2
∫
d4x1d

4x2d
4x3d

4x4 : Ψ̄e(x2)γνΨe(x2) : ×

⟨0|T (Aµ(x1)Aν(x2))|0⟩⟨0|T (τττab · ϕϕϕ(x3)τττ cd · ϕϕϕ(x4))|0⟩×

[(Ψ̄nc(x4)γ5Ψnd(x4))Ψ̄(x1)Γµ⟨0|T (Ψn(x1)Ψ̄na(x3))|0⟩pairγ5Ψnb(x3)+
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(Ψ̄nc(x4)γ5Ψnd(x4))Ψ̄na(x3)γ5⟨0|T (Ψnb(x3)Ψ̄n(x1))|0⟩pairΓµΨ(x1)+

(Ψ̄na(x3)γ5Ψnb(x3))Ψ̄(x1)Γµ⟨0|T (Ψ(x1)Ψ̄nc(x4))|0⟩pairγ5Ψnd(x4)+

(Ψ̄na(x3)γ5Ψnb(x3))Ψ̄nc(x4)γ5⟨0|T (Ψnd(x4)Ψ̄n(x1))|0⟩pairΓµΨn(x1)]. (398)

The subscript “pair” indicates the part of the propagator that involves two v spinors -

discarding the u spinor part. The integrals can all be done using the Fourier representations

of the fields and propagators, resulting in 4-momentum conserving delta functions at each

vertex. The above expressions for the fields are used to calculate the expressions for the

propagators in order to be consistent with the conventions used in these notes.

The fermion propagators for the electron and nucleon have the structure

⟨0|T (Ψa(x)Ψ̄b(y))|0⟩ =
∫

dp
(2π)3/2

dk
(2π)3/2

√
m

ω(p)

√
m

ω(k)
×

⟨0|
(
(a(p, µ)ua(p, µ)e−ip·xa†(k, ν)ūb(k, ν)eik·yθ(tx − ty)

−b(k, ν)v̄b(k, ν)e−ik·yb†(p, µ)va(p, µ)eip·xθ(ty − tx)
)
|0⟩ =∫

dp
(2π)3

m

ω(p)
×(

(ua(p, µ)ūb(p, µ)e−ip·(x−y)θ(tx − ty) − va(p, µ)v̄b(p, µ)e−ip·(y−x)θ(ty − tx)
)
. (399)

The second term in 399 represents the “pair” contribution. The integral representation of

the Heaviside function

θ(x0 − y0) = 1
2πi

∫
ds
eis(x0−y0)

s− i0+ (400)

can be used to express 399 as

−i
∫

dpds
(2π)4

m

ω(p)
×(

(ua(p, µ)ūb(p, µ)e
ip·(x−y)−i(ω(p)−s)(x0−y0)

s− i0+ − va(p, µ)v̄b(p, µ)e
ip·(y−x)−i(ω(p)−s)(y0−x0)

s− i0+ eip·(y−x))

)
.

(401)

Next let p0 = ω(p) − s. Then (401) becomes

−i
∫

d4p

(2π)4
m

ω(p)
×

(
ua(p, µ)ūb(p, µ) e−ip·(x−y)

ω(p) − p0 − i0+ − va(p, µ)v̄b(p, µ) e−ip·(y−x)

ω(p) − p0 − i0+ e
ip·(y−x)

)
(402)
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If we let p→ p′ = −p→ p in the second term this becomes

−i
∫

d4p

(2π)4
m

ω(p)
e−ip·(x−y)×

(
(ua(p, µ)ūb(p, µ)
ω(p) − p0 − i0+ − va(−p, µ)v̄b(−p, µ)

ω(p) + p0 − i0+

)
. (403)

Using (155) and (156) in (403) gives

−i
∫

d4p

(2π)4
m

ω(p)
e−ip·(x−y)×

1
2m

(
(m− γγγ · p + ω(p)γ0)ab

ω(p) − p0 − i0+ − (−m+ γγγ · p + ω(p)γ0)ab
ω(p) + p0 − i0+

)
=

−i
∫

d4p

(2π)4
1

2ω(p)
e−ip·(x−y)×(

(m− γγγ · p + ω(p)γ0)ab
ω(p) − p0 − i0+ + (m− γγγ · p − ω(p)γ0)ab

ω(p) + p0 − i0+

)
. (404)

This can also be expressed in terms of the projection operators (155) and (156)∑
µ

ua(p, µ)ūb(p, µ) = Λ+(p) = m− p · γγγ + γ0ω

2m

∑
µ

va(−p, µ)v̄b(−p, µ) = −Λ−(−p) = −m+ p · γγγ + γ0ω

2m

−i
∫

d4p

(2π)4
m

ω(p)
e−ip·(x−y)×

[( Λ+(p)ab
ω(p) − p0 − i0+ + Λ−(−p)ab

ω(p) + p0 − i0+ ). (405)

This form of the propagator is useful for two-body current calculations when one want to

separate out the u and v spinor contributions. The first term is absorbed in initial or final

state while the second term involves the antiparticle creation and annihilation operators,

and contributes to the two-body currents. As a check note that it follows from (405) that

⟨0|T (Ψa(x)Ψ̄b(y))|0⟩

−i
∫

d4p

(2π)4
1

2ω(p)
e−ip·(x−y)×(

(m− γγγ · p + ω(p)γ0)ab
ω(p) − p0 − i0+ + (m− γγγ · p − ω(p)γ0)ab

ω(p) + p0 − i0+

)
=

−i
∫

d4p

(2π)4
e−ip·(x−y)

ω(p)
ω(p)(m− γγγ · p + p0γ0)ab
ω(p)2 − (p0)2 − i0+
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−i
∫

d4p

(2π)4 e
−ip·(x−y) (m+ p · γ)ab

ω(p)2 − (p0)2 − i0+ =

−i
∫

d4p

(2π)4 e
−ip·(x−y) (m+ p · γ)ab

ω(p)2 − (p0)2 − i0+ =

−i
∫

d4p

(2π)4
e−ip·(x−y)

m− p · γ − i0+ (406)

which is that standard form of the time-ordered product. The quantity needed in the “pair”

current can be written in several equivalent ways:

⟨0|T (Ψa(x)Ψ̄b(y))|0⟩pair := − i

∫
d4p

(2π)4
1

2ω(p)
e−ip·(x−y) (m− γγγ · p − ω(p)γ0)ab

ω(p) + p0 − i0+ =

− i

∫
d4p

(2π)4
m

ω(p)
e−ip·(x−y)−va(−p)v̄b(−p)

ω(p) + p0 − i0+ =

i

∫
d4p

(2π)4
m

ω(p)
e−ip·(x−y)γ5ua(−p)ūb(−p)γ5

ω(p) + p0 − i0+ =

i

∫
d4p

(2π)4
m

ω(p)
e−ip·(x−y)γ5γ

0ua(p)ūb(p)γ0γ5

ω(p) + p0 − i0+

(407a)

(407b)

(407c)

(407d)

To compute the pseudoscalar meson propagator the representation of the heaviside (400)

function is used again. The propagator has the form

⟨0|T (τττ · ϕϕϕ(x)τττ · ϕϕϕ(y)) |0⟩ =∫
dp

2ω(p)(2π)3τττ · τττ [
∫

ds

(2πi)(s− i0+)
e−ip·(x−y)+is(x0−y0)

+
∫

ds

(2πi)(s− i0+)
eip·(x−y)−is(x0−y0)] (408)

making the variable change p0 = ω(p) − s

−i
∫

d4p

2ω(p)(2π)4τττ · τττ
(

1
ω(p) − p0 − i0+ e

−ip·(x−y)

+
∫

1
ω(p) − p0 − i0+ e

ip·(x−y)
)
. (409)
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Next change the sign of p in the second term to get

−i
∫

d4p

2ω(p)(2π)4τττ · τττ [ 1
ω(p) − p0 − i0+ + 1

ω(p) + p0 − i0+ ]e−ip·(x−y) =

−i
∫

d4p

(2π)4τττ · τττ
1

ω(p)2 − (p0)2 − i0+ e
−ip·(x−y) =

−i
∫

d4p

(2π)4τττ · τττ
1

m2 + p2 − i0+ e
−ip·(x−y) (410)

This gives the pion propagator

⟨0|T (τττ · ϕϕϕ(x)τττ · ϕϕϕ(y)) |0⟩ = −i
∫

d4p

(2π)4τττ · τττ
1

m2
π + p2 − i0+ e

−ip·(x−y) (411)

The terms that we need for (397) are (411),

⟨0|T (Ψa(x)Ψ̄b(y))|0⟩pair = −i
∫

d4p

(2π)4
m

ω(p)
e−ip·(x−y) Λ−(−p)ab

ω(p) + p0 − i0+ =

i

∫
d4p

(2π)4
m

ω(p)
e−ip·(x−y)γ5ua(−p)ūb(−p)γ5

ω(p) + p0 − i0+ (412)

and the photon propagator

⟨0|T (Aµ(x)Aν(y))|0⟩ = −iηµν
∫

d4p

(2π)4
e−ip·(x−y)

p2 + iϵ
. (413)

Using these in the expression, the terms that contribute to the two nucleon - one electron

matrix elements of the time ordered product in the fourth order term in (398) ) are

⟨0|a(p, µ)Ψ̄(x) → 1
(2π)3/2

m

ω(p)
ū(p, µ)

Ψ(x)a†(p, µ)|0⟩ →= 1
(2π)3/2

m

ω(p)
u(p, µ)

−e2( fπ
mπ

)2
∫
d4kd4qd4t

mem
2
n√

ωe(pe)ωe(p′
e)ωn(p1)ωn(p2)ωn(p′

1)ωn(p′
2)×

−iηµν
q2 + i0+

−iτττab · τττ cd
m2

π + k2 − i0+×[
(2π)16

(2π)12(2π)9 δ
4(p1 − t− k)δ4(k + p2 − p′2)δ4(t+ q − p′1)δ4(pe − q − p′e)×

(a†e(p′
e)ūe(p′

e)γνue(pe))(a†n(p′
2)ūnc(p′

2)γ5und(p2)a(p2))×

a†n(p′
1)ūn(p′

1)Γµ m

ωn(t)
iγ5un(−t)ūna(−t)γ5

ωn(t) + t0 − iϵ
γ5unb(p1)a(p1)0+

(2π)16

(2π)12(2π)9 δ
4(p1 + q − t)δ4(t− k − p′1)δ4(p2 + k − p′2)δ4(pe − q − p′e)×

(a†e(p′
e)ūe(p′

e)γνue(pe))(a†n(p′
2)ūnc(p′

2)γ5und(p2)a(p2))×
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a†n(p′
1)ūna(p′

1)γ5
m

ωn(t)
iγ5unb(−t)ū(−t)γ5

ωn(t) + t0 − iϵ
γµun(p1)an(p1)+

(2π)16

(2π)12(2π)9 δ
4(p1 − k − p′1)δ4(p2 + k − t)δ4(t+ q − p′2)δ4(pe − q − p′e)×

(a†e(p′
e)ūe(p′

e)γνue(pe))(a†n(p′
1)ūna(p′

1)γ5unb(p1)an(p1))×

a†n(p′
2)ūn(p′

2)Γµ m

ωn(t)
iγ5u(−t)ūnc(−t)γ5

ωn(t) + t0 − iϵ
γ5und(p2)a(p2)+

(2π)16

(2π)12(2π)9 δ
4(p1 − k − p′1)δ4(k + t− p′2)δ4(p2 − t+ q)δ4(pe − q − p′e)×

(a†e(p′
e)ūe(p′

e)γνue(pe)ae(pe)(a†n(p′
1)ūna(p′

1)γ5unb(p1)an(p1))×

a†n(p′
2)ūnc(p′

2)γ5
m

ωn(t)
iγ5und(−t)ūn(−t)γ5

ωn(t) + t0 − iϵ
Γµun(p2)a(p2)

]
(414)

integrating over the momenta, q, t and k gives an overall 4-momentum conserving delta

function along with constraints in each of the four terms

I t = p1 + p2 − p′2 k = p′2 − p2 q = p′1 + p′2 − p1 − p2

II t = p′1 + p′2 − p2 k = p′2 − p2 q = p′1 + p′2 − p1 − p2

III t = p1 + p2 − p′1; k = p1 − p1; q = p′1 + p′2 − p1 − p2

IV t = p′1 + p′2 − p1 k = p1 − p′1 q = p′1 + p′2 − p1 − p2

in all four terms:

(2π)4ie2δ4(pe+p1+p2−p′e−p′1−p′2)
me

(2π)3
√
ωe(pe)ωe(p′

e)
(a†e(p′

e)ūe(p′
e)γνue(pe)ae(pe)]

ηµν
q2 + i0+×

( fπ
mπ

)2 m2
n

(2π)6
√
ωn(p1)ωn(p2)ωn(p′

1)ωn(p′
2)
×(

a†n(p′
2)ūnc(p′

2)γ5und(p2)a(p2)
τττab · τττ cd

m2
π + (p′2 − p2)2 − i0+×

a†n(p′
1)ūn(p′

1)Γµ m

ωn(p1 + p2 − p′2)
γ5und(−(p1 + p2 − p′2))ūna(−(p1 + p2 − p′2))γ5

(ωn(p1 + p2 − p′2) + ωn(p1) + ωn(p2) − ωn(p′2) − iϵ)
γ5unb(p1)a(p1)+

a†n(p′
2)ūnc(p′

2)γ5und(p2)a(p2)
τττab · τττ cd

m2
π + (p′2 − p2)2 − i0+×

a†n(p′
1)ūna(p′

1)γ5
m

ωn(p′
1 + p′

2 − p2)
γ5unb(−p′

1 − p′
2 + p2)ūn(−p′

1 − p′
2 + p2)γ5

(ωn(p′
1 + p′

2 − p2) + ω(p′
1) + ω(p′

2) − ω(p2) − iϵ)
Γµun(p1)an(p1)+

a†n(p′
1)ūna(p′

1)γ5unb(p1)an(p1)
τττab · τττ cd

m2
π + (p1 − p′1)2 − i0+×
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a†n(p′
2)ūn(p′

2)Γµ m

ωn(p1 + p2 − p′
1)

γ5un(−p1 − p2 + p′
1)ūnc(−p1 − p2 + p′

1)γ5

(ωn(−p1 − p2 + p′
1) + ω(p1) + ω(p2) − ω(p′

1) − iϵ)
γ5und(p2)a(p2)+

a†n(p′
1)ūna(p′

1)γ5unb(p1)an(p1)
τττab · τττ cd

m2
π + (p1 − p′1)2 − i0+×

a†n(p′
2)ūnc(p′

2)γ5
m

ωn(p′
1 + p′

2 − p1)
γ5und(−p′

1 − p′
2 + p1)ūnb(−p′

1 − p′
2 + p1)γ5

(ωn(p′
1 + p′

2 − p1) + (ωn(p′
1) + ω(p′

2) − ω(p1)) − iϵ)
Γµun(p2)a(p2)

)
(415)

It is also useful to use

ū(−p) = ū(p)γ0 u(−p) = γ0u(p)

Comparing with (330) gives the two-body current matrix elements

⟨p′1, p′2|Jµ
ex(q)|p1, p2⟩ =

( fπ
mπ

)2 m2
n

(2π)6
√
ωn(p1)ωn(p2)ωn(p′

1)ωn(p′
2)
×(

ūnc(p′
2)γ5und(p2) ×

τττab · τττ cd
m2

π + (p′2 − p2)2 − i0+

ūn(p′
1)Γµ m

ωn(p1 + p2 − p′
2)

γ5γ
0und(p1 + p2 − p′

2)ūna(p1 + p2 − p′
2))γ0γ5

ωn(p1 + p2 − p′
2) + +ω(p1) + ω(p2) − ω(p′

2) − iϵ
γ5unb(p1) × +

ūnc(p′
2)γ5udn(p2)

τττab · τττ cd
m2

π + (p′2 − p2)2 − i0+×

ūn(p′
1)γ5

m

ωn(p′
1 + p′

2 − p2)
γ5γ

0unb(p′
1 + p′

2 − p2)ūn(p′
1 + p′

2 − p2)γ0γ5

ωn(p′
1 + p′

2 − p2) + ω(p′
1) + ω(p′

2) − ω(p2) − iϵ
Γµun(p1) × +

ūna(p′
1)γ5unb(p1) ×

τττab · τττ cd
m2

π + (p1 − p′1)2 − i0+

ūn(p′
2)Γµ m

ωn(p1 + p2 − p′
1)

γ5γ
0un(p1 + p2 − p′

1)ūnc(p1 + p2 − p′
1)γ0γ5

ωn(p1 + p2 − p′
1) + ω(p1) + ω(p2) − ω(p′

1) − iϵ
γ5und(p2) × +

ūna(p′
1)γ5unb(p1) ×

τττab · τττ cd
m2

π + (p1 − p′1)2 − i0+

ūnc(p′
2)γ5d

m

ωn(p′
1 + p′

2 − p1)
γ5γ

0und(p′
1 + p′

2 − p1)ūnb(p′
1 + p′

2 − p1)γ0γ5

ωn(p′
1 + p′

2 − p1) + ω(p′
1) + ω(p′

2) − ω(p1) − iϵ
Γµun(p2)

)
(416)

Eliminating γ2
5 gives

⟨p′1, p′2|Jµ
ex(q)|p1, p2⟩ =

( fπ
mπ

)2 m2
n

(2π)6
√
ωn(p1)ωn(p2)ωn(p′

1)ωn(p′
2)
×(

ūnc(p′
2)γ5und(p2) ×

τττab · τττ cd
m2

π + (p′2 − p2)2 − i0+
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ūn(p′
1)Γµ m

ωn(p1 + p2 − p′
2)
γ5γ

0und((p1 + p2 − p′
2))ūna((p1 + p2 − p′

2))γ0

ωn(p1 + p2 − p′
2) + ω(p1) + ω(p2) − ω(p′

2) − iϵ
unb(p1) × +

ūnc(p′
2)γ5udn(p2)

τττab · τττ cd
m2

π + (p′2 − p2)2 − i0+×

ūn(p′
1)

m

ωn(p′
1 + p′

2 − p2)
γ0unb(p′

1 + p′
2 − p2)ūn(p′

1 + p′
2 − p2)γ0γ5

ωn(p′
1 + p′

2 − p2) + ω(p′
1) + ω(p′

2) − ω(p2) − iϵ
Γµun(p1) × +

ūna(p′
1)γ5unb(p1) ×

τττab · τττ cd
m2

π + (p1 − p′1)2 − i0+

ūn(p′
2)Γµ m

ωn(p1 + p2 − p′
1)

γ5γ
0un(p1 + p2 − p′

1)ūnc(p1 + p2 − p′
1)γ0

ωn(p1 + p2 − p′
1) + ω(p1) + ω(p2) − ω(p′

1) − iϵ
und(p2) × +

ūna(p′
1)γ5unb(p1) ×

τττab · τττ cd
m2

π + (p1 − p′1)2 − i0+

ūnc(p′
2)

m

ωn(p′
1 + p′

2 − p1)
γ0und(p′

1 + p′
2 − p1)ūnb(p′

1 + p′
2 − p1)γ0γ5

ωn(p′
1 + p′

2 − p1) + ω(p′
1) + ω(p′

2) − ω(p1) − iϵ
Γµun(p2)

)
(417)

In (yunfei) the quantities below are approximated by

mN

ωn(p′
1 + p′

2 − p1)
1

ωn(p′
1 + p′

2 − p1) + ω(p′
1) + ω(p′

2) − ω(p1) − iϵ
≈ 1/2mN

which simplifies this expression to

⟨p′1, p′2|Jµ
ex(q)|p1, p2⟩ =

( fπ
mπ

)2 1
2mN

m2
n

(2π)6
√
ωn(p1)ωn(p2)ωn(p′

1)ωn(p′
2)
×(

ūnc(p′
2)γ5und(p2)τττab · τττ cdūna(p1 + p2 − p′

2)γ0unb(p1)ūn(p′
1)Γµγ5γ

0und(p1 + p2 − p′
2)+

m2
π + (p′2 − p2)2 − i0+

ūnc(p′
2)γ5udn(p2)τττab · τττ cdūn(p′

1)γ0unb(p′
1 + p′

2 − p2)ūn(p′
1 + p′

2 − p2)γ0γ5Γµun(p1)
m2

π + (p′2 − p2)2 − i0+ +

ūna(p′
1)γ5unb(p1)τττab · τττ cdūnc(p1 + p2 − p′

1)γ0und(p2)ūn(p′
2)Γµγ5γ

0un(p1 + p2 − p′
1)

m2
π + (p1 − p′1)2 − i0+

ūna(p′
1)γ5unb(p1)τττab · τττ cdūnc(p′

2)γ0und(p′
1 + p′

2 − p1)ūnb(p′
1 + p′

2 − p1)γ0γ5Γµūnc(p2)
m2

π + (p1 − p′1)2 − i0+

)
(418)

In these expressions the quantities in the red can be absorbed into the initial or final states,

so mathematically this still looks like the calculation of an impulse matrix element. These

matrix elements are rotationally covariant. They do not transform correctly with respect

dynamical boosts and they do not satisfy current conservation. This matrix element, along

with the impulse current, can be defined as the current in a given pair of frames - matrix
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elements in any other pair of frame can be determined by covariance - these matrix elements

will not be the same as the corresponding matrix elements in the other pair of frames. The

sensitivity of calculations to this difference provides a measure of the violations of current

conservation of current covariance at the operator level.

Note that this current is not necessarily covariant or conserved; however if current matrix

elements are is evaluated in a given frame, and defined in all other frames by covariance

and current conservation, the resulting matrix elements are will be matrix elements of a

covariant current. The result assumes that the current agrees with matrix elements of the

above current in the given frame and is related to matrix elements in any other frame by

covariance and current conservation.

The spinor quantities that enter the two-body current are

ū(p′)γ5u(p) = 1
2

(Λ̃c(p′)Λc(p) − Λc(p′)Λ̃c(p))

ū(p′)γ0u(p) = u†(p′)u(p) = 1
2

(Λ̃c(p′)Λ̃c(p) − Λc(p′)Λc(p)))

The other terms that enter are

ū(p′)Γµγ5γ0u(p) = 1
2

(Λ̃c(p′),Λc(p′)Γµ

 Λ̃c(p)

−Λc(p)


ū(p′)γ0γ5Γµu(p)1

2
(Λc(p′),−Λ̃c(p))Γµ

 Λc(p)

Λ̃c(p)


where

Λc(p) = σ0 cosh(ρ/2) + σσσ · ρ̂ρρ sinh(ρ/2) = 1√
2m(m+ p0)

(
(p0 +m)σ0 + p · σσσ

)
Λ̃c(p) = σ0 cosh(ρ/2) − σσσ · ρ̂ρρ sinh(ρ/2) = 1√

2m(m+ p0)
(
(p0 +m)σ0 − p · σσσ

)
and

Γµ = F1γ
µ + i

(p′ − p)νσνµ

2m
F2

I used the representation

γµ :=

 0 σ̃µ

σµ 0


γ5 = iγ0γ1γ2γ3 =

 I 0

0 −I
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{γµ, γν} = 2ηµν − iσ0i = 1
2

[γ0, γi] =

 σi 0

0 −σi

 σij = i

2
[γi, γj] = ϵijk

 σk 0

0 σk


to compute these quantities.

The Breit frame is useful frame; we also use rotational covariance to choose the 3 direction

as the direction of momentum transfer, and finally have to ensure rotational covariance about

the z axis. In the Breit frame

p1 + p2 = (2ω, 0, 0,−q
2

)

p′1 + p′2 = (2ω, 0, 0, q
2

)

when

p1 = p′1 then p′2 − p2 = (0, 0, 0, q)

p2 = p′2 then p′1 − p2 = (0, 0, 0, q)

The Breit frame quantities are related to the lab quantities by a Lorentz boost that depends

on the final momentum.

Next we need to identify the part of this expression that corresponds to a one pion

exchange potential

To do this first note that the Born approximation to the scattering operator is

S = I − 2πiδ(Ef − Ei)Tfi → I − 2πiδ(Ef − Ei)Vfi

This suggest calculating the S operator to leading order, and removing the energy conserva-

tion constraint to get an expression of the interaction. The resulting expression will have a

non-trival dependence on the initial and final energies. Handling these issues involves choos-

ing a perscription. The first step is to calculate the Born approximation using the interaction

picture. For scattering with a vertex interaction this is second order in the interaction:

S = I + (−i)2

2!

∫ ∞

−∞
(−i)2( fπ

mπ

)2d3xd3yΨ̄(y)γ5Ψ(y)⟨0|T (τττ · ϕϕϕ(x)τττ · ϕϕϕ(y))|0⟩Ψ̄(x)γ5Ψ(x)

I extract the parts of the fields involving two annihilation operators followed by two creation

operators

= I+( fπ
mπ

)2 1
(2π)6

m2√
ωn(p′

1)ωn(p′
2)ωn(p1)ωn(p2)

ei(p
′
1−p1)·xū(p′

1)γ5u(p1)ei(p
′
2−p2)·yū(p′

2)γ5u(p2)×
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(− i

(2π)4

∫
d4ke

−ik(x−y)
(2π)4 τττ · τττ

m2
π + k2 − i0+ )

= I − i( fπ
mπ

)2 (2π)4

(2π)6
m2√

ωn(p′
1)ωn(p′

2)ωn(p1)ωn(p2)
δ4(p′1 − p1 − k)δ4(p′2 − p2 + k)×

ūa(p′
1)γ5ub(p1)

τττab · τττ cd
m2

π + (p′1 − p1)2 − i0+ ūc(p
′
2)γ5ud(p2)

The potential can be extracted as

i

2π
(−i)( fπ

mπ

)2 (2π)4

(2π)6
m2√

ωn(p′
1)ωn(p′

2)ωn(p1)ωn(p2)
δ4(p′1 − p1 − k)δ4(p′2 − p2 + k)×

ūa(p′
1)γ5ub(p1)

τττab · τττ cd
m2

π + (p′1 − p1)2 − i0+ ūc(p
′
2)γ5ud(p2)

removing the −(2π)iδ(Ef − Ei) gives

⟨p′
1,p′

2|V |p1,p2⟩ =

1
(2π)3 ( fπ

mπ

)2 m2√
ωn(p′

1)ωn(p′
2)ωn(p1)ωn(p2)

δ3(p′
1 + p′

2 − p1 − p2)×

ūa(p′
1)γ5ub(p1)

τττab · τττ cd
m2

π + (p′1 − p1)2 − i0+ ūc(p
′
2)γ5ud(p2)

XXII. ELECTROWEAK CURRENTS

The structure of the interaction term follows the particle data book p180 equation (10.2).

This (with a − sign), evaluated at time 0, is the weak interaction that appears in the

Hamiltonian. For nuclear physics applications the interaction with up and down quarks

should be replaced by interactions with protons and neutrons with appropriate form factors.

The theory has U(2) and SU(2) gauge fields, Bµ(x) and W µ
a (x). The covariant derivative

is

Dµ = ∂µ − gW µ
a Ta − ig′BµS (419)

with the kinetic term is

LK = −1
4
BµνBµν −

1
4
W aµνWaµν (420)

The electroweak fields are

Bµν = ∂µBν − ∂νBµ (421)

W µν
a = ∂µW ν

a − ∂νW µ
a − gϵabcW

µ
b W

ν
c (422)
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where

[T a, T b] = iϵabcT
c T = 1

2
σσσ (423)

the coupling constants are related by the Weinberg angle

g = g′ tan(θW ). (424)

S = Q− T 3 (425)

where Q is the electric charge operator.

The familiar fields are related to the Gauge fields by

W µ+(x),W µ−,W (x)µ3 SU(2) flavor Bµ(x) U(1) (426)

These are related to the electromagnetic vector potential and neutral current by

Aµ(x) = Bµ(x) cos(θW ) +W 3
µ(x) sin(θW ) (427)

Zµ(x) = W 3
µ(x) cos(θW ) −Bµ(x) sin(θW )+ (428)

W±
µ (x) = 1√

2
(W 1

µ(x) ∓ iW 2
µ(x)) (429)

Fermion famlies transform as SU(2) doublets

Ψi(x) =

 νi(x)

li−(x)

 Ψi(x) =

 ui(x)

d′i(x)

 (430)

where

d′i =
∑
j

Vijdj Vij = CKM matrix (431)

The interaction terms with the fermions is

−HI(x) = LI(x) − e
∑
i

qiΨ̄i(x)γµΨi(x)Aµ(x)

− g

2 cos(θM)
∑
i

Ψ̄i(x)(γµ(giV − γ5giA)Ψi(x)Zµ(x)

− g

2
√

2

∑
i

Ψ̄i(x)(γµ(1 − γ5)(T+
i W

+
µ + T−

i W
−
µ )ψi (432)

This has the general form

HI(x) =
∑
i

λiJ
µ
i (x)Viµ(x) (433)
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The constants are

GF = 1.16637876 × 10−5(Gev)−2 (434)

GF = g2
√

2
8M2

W

small momenta (435)

giv = T i
3l − 2Qi sin2(θ) (436)

gia = T i
3l (437)

sin2(θW ) = .22337 (438)

e = g sin(θW ) (439)

Structure of the 4 Fermi interaction

−GF√
2

([Ψ̄nΓiΨn(x)][Ψ̄e(x)ΓiΨν(x)] + hc) (440)

where

Γ = I, γ5, γµ, γ5γµ, σµν (441)

Kinematic variables - neutrino nucleon scattering

ν(p) +N → l−(p′) +X (442)

s = (p+ p+ n)2 − 2ME (443)

Q2 = −q2 = −(p+ p′)2 = 4EE ′ sin2(θ
2

) (444)

ν = E − E ′ = q · pN
M

(445)

W 2 = −Q1 + 2Mν +M2 (446)

x = −q2

2q · pN
= Q2

2Mv
(447)

y = ν

E
= Q2

2MEx
= q · pN
p · pn

(448)

Appendix 1 Derivation of D function - used Schwinger method

Define

n± := j ± µ

j = 1
2

(n+ + n−) µ = 1
2

(n+ − n−)
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In this notation

|n+, n−⟩ := |j, µ⟩

the raising and lowering operators become

J+|n+, n−⟩ =
√

(n+ + 1)n−|n+ + 1, n− − 1⟩

J−|n+, n−⟩ =
√
n+(n− + 1)|n+ − 1, n− + 1⟩

Introduce the operators a+, a
†
+, a−, a

†
−

a+|n+, n−⟩ = √
n+|n+ − 1, n−⟩ a†+|n+, n−⟩ =

√
n+ + 1|n+ + 1, n−⟩

a−|n+, n−⟩ = √
n−|n+, n− − 1⟩ a†−|n+, n−⟩ =

√
n− + 1|n+, n− + 1⟩

Using these operators the angular momentum operators can be expressed as

J+ = a†+a− J− = a†−a+

J = (a†+a
†
+)1

2
σσσ

 a+

a−


where

σσσ =

 0 1

1 0

 ,

 0 −i

i 0

 ,

 1 0

0 −1


are the Pauli matrices. In what follows we use the short hand notation:

a :=

 a+

a−

 a† = (a†+, a
†
−) J = 1

2
a†σσσa

In this representation the unitary rotation operator has the form

U(R) = eiθn̂·J

The Wigner D functions are matrix elements of this operator in an angular momentum basis

Dj
µν [R] := ⟨j, µ|U(R)|j′, ν ′⟩ = ⟨n+, n−|U(R)|n′

+, n
′
−⟩

Using the creation and annihilation operator to express the normalized eigenstates of J2 and

J · ẑ

|n+, n−⟩ = (a†+)n+√
n+!

(a†−)n−√
n−!

|0, 0⟩
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this becomes

Dj
µν [R] = ⟨0, 0|

an
+

+√
n+!

an
−

−√
n−!

eiθn̂·a† σσσ
2 a

(a†+)n′
+√

n′
+!

(a†−)n′
−√

n′
−!

|0, 0⟩

where

j = 1
2

(n+ + n−) = 1
2

(n′
+ + n′

−)

ν = 1
2

(n′
+ − n′

−)

µ = ν
1
2

(n+ − n−)

Since a± is an annihilation operator

|0, 0⟩ = e−iθn̂·a† σσσ
2 a|0, 0⟩

the above identity can be expressed in the form

Dj
µν [R] = ⟨0, 0|

an
+

+√
n+!

an
−

−√
n−!

|eiθn̂·a† σσσ
2 a

(a†+)n′
+√

n′
+!

(a†−)n′
−√

n′
−!
e−iθn̂·a† σσσ

2 a|0, 0⟩ =

⟨0, 0|
an

+
+√
n+!

an
−

−√
n−!

(eiθn̂·a† σσσ
2 aa†+e

−iθn̂·a† σσσ
2 a)n′

+√
n′

+!
(eiθn̂·a† σσσ

2 aa†−e
−iθn̂·a† σσσ

2 a)n′
−√

n−!
|0, 0⟩ =

In order to evaluate this expression use

eABe−A = B + [A,B] + 1
2!

[A, [A,B]] + 1
3!

[A, [A, [A,B]]] · · ·

with + = 1,− = 2 note

eiθn̂·a† σσσ
2 aa†ie

−iθn̂·a† σσσ
2 a =

a†i + iθ
∑
jk

[a†jn̂ · σ
σσjk

2
ak, a

†
i ] + · · · =

a†i + iθ
∑
j

a†jn̂ · σ
σσji

2
+ · · · =

a†j(ei
θ
2 n̂·σσσ)ji =

∑
j

a†j(δij cos(θ
2

) + in̂ · σσσji sin(θ
2

))
∑
j

a†jR(θn̂)ji

where

R(n̂)ji = ei
θ
2 n̂·σσσ

is the SU(2) representation of the rotation. Using these results in the expression for Dj
µν

gives

Dj
µν [R] =
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⟨0, 0|
an

+
+√
n+!

an
−

−√
n−!

(
∑2

m=1 a
†
mRm+)n′

+√
n′

+!
(
∑2

l=1 a
†
lRl−)n′

−√
n′
−!

|0, 0⟩ =

⟨0, 0| a
n+
+√
n+!

an
−

−√
n−!

(a†+R++ + a†−R−+)n′
+√

n′
+!

(a†+R+− + a†−R−−)n′
−√

n′
−!

|0, 0⟩ =

Since [a†+a
†
−] = 0 the powers can be expanded in a binomial series

(a†+R++ + a†−R−+)n′
+ =

n′
+∑

k=0

n′
+!

k!(n′
+ − k)!

(R++a
†
+)k(R−+a

†
−)n′

+−k

(a†+R+− + a†−R−−)n′
− =

n′
−∑

l=0

n−!
l!(n′

− − l)!
(R+−a

†
+)l(R−−a

†
−)n′

+−l

Next use these expansions in the above and noting that the non-zero terms must have the

same number of creation and annihilation operators with normalization

⟨0|(ai)n(a†i )n|0⟩ = n!,

In the above expression

n+ = k + l n− = 2n′
+ − k − l

because of these constrains l can be eliminated

l = n+ − k

This gives

⟨0, 0|
an

+
+√
n+!

an
−

−√
n−!

(
∑2

r=1 a
†
rRr+)n′

+√
n′

+!
(
∑2

s=1 a
†
sRs−)n′

−√
n′
−!

|0, 0⟩ =

⟨0, 0|
an

+
+√
n+!

an
−

−√
n−!

(a†+R++ + a†−R−+)n′
+√

n′
+!

(a†+R+− + a†−R−−)n−√
n′
−!

|0, 0⟩ =

∑
l,m

⟨0, 0|
an

+
+√
n+!

an
−

−√
n−!

n′
+!n′

−!
l!k!(n′

+ − k)!(n′
− − l)!

(a†+R++)k(a†−R−+)n′
+−k√

n′
+!

(a†+R+−)l(a†−R−−)n′
−−l√

n′
−!

|0, 0⟩ =

n′
+∑

k=0

n′
−∑

l=0

√
n+!n−!n′

+!n′
−!

l!k!(n′
+ − k)!(n′

− − l)!
Rk

++R
n′

+−k

−+ Rl
+−R

n′
−l

−− =

Using l = n+ − k

n′
+∑

k=0

√
n+!n−!n′

+!n′
−!

(n+ − k)!k!(n′
+ − k)!(n′

− − n+ + k)!
Rk

++R
n′

+−k

−+ R
n′

+−k

+− R
n′
−−n++k

−−
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the last step is to replace n± = j ± µ

j+ν∑
k=0

√
(j + µ)!(j − µ)!(j + ν)!(j − ν)!

(j + µ− k)!k!(j + ν − k)!(k − ν − µ)!
Rk

++R
j+µ−k
−+ Rj+ν−k

+− Rk−ν−µ
−−

which is the expression of the Dj
µν [R] as a function of the SU(2) matrix elements

Dj
µν [R] =

j+ν∑
k=0

√
(j + µ)!(j − µ)!(j + ν)!(j − ν)!

(j + µ− k)!k!(j + ν − k)!(k − ν − µ)!
Rk

++R
j+µ−k
−+ Rj+ν−k

+− Rk−ν−µ
−−

where

R = ei
θ
2 n̂·σσσ =

 R++ R+−

R−+ R−−


1. Elastic neutrino-deuteron scattering

⟨p′
D, µ

′
D, D,p′

ν , µ
′
ν |T |pD, µD, D,pν , µν⟩ =

−GF√
2

(2π)3⟨p′
D, µ

′
D, D|Jα

w(0)|ΦD|pD, µD, D⟩gαβ⟨p′
ν , µ

′
ν |Jβ

ν (0)|pν , µν⟩ , (449)

where GF is the Fermi constant. The neutrino matrix element is written as

⟨p′
ν , µ

′
ν |Jβ

ν (0)|pν , µβ⟩ ≡
1

(2π)3
1√

4|pν ||p′
ν |
Lβ (p′

ν , µ
′
ν ,pν , µν) , (450)

with

Lβ (p′
ν , µ

′
ν ,pν , µν) = ūν(p′

ν , µ
′
ν)γβ (1 − γ5)uν(pν , µν) (451)

and the Dirac spinors for massless neutrinos defined as

uν(pν , µν) =
√
|pν |

 χµν

pν ·σ
|pν | χµν

 . (452)

Also for weak reactions we include in the nuclear matrix elements

⟨p′
D, µ

′
D, D|Jα

w(0)|pD, µD, D⟩ ≡ 1
(2π)3 N

α (p′
D, µ

′
D,pD, µD ) ,

only the single-nucleon contributions in the well known form:

p′, µ′, τ ′Jµ
k (0)p, µ, τ

= δτ ′τ ūN(p′, µ′)
(
FN

1,τ (Q2)γµ + i

2m
σµνqνF

N
2,τ (Q2)

+FN
A,τ (Q2)γµγ5 + qµ

m
γ5F

N
P,τ (Q2)

)
uN(p, µ) , (453)
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where qµ = p′µ − pµ and the weak neutral-current nucleon form factors FN
i,τ depend on the

nucleon isospin. For these quantities we use the parametrizations from Refs. [? ? ]. Actually

the part with FP,τ gives no contribution in Eq. (453) in the case of massless neutrinos but

we keep it, since the single nucleon charged current has the same functional form, despite

different isospin dependence.
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