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Relativistic invariance in Euclidean formulations of quantum mechanics is discussed. Relativistic
treatments of quantum theory are needed to study hadronic systems at sub-hadronic distance scales.
Euclidean formulations of relativistic quantum mechanics have some computational advantages. In
the Euclidean representation the physical Hilbert space inner product is expressed in terms of
Euclidean space-time variables with no need for any analytic continuation. The identification of the
complex Euclidean group with the complex Poincaré group relates the infinitesimal generators of
both groups. In this work explicit representations of the Poincaré generators in Euclidean space-
time variables for all positive-mass positive-energy irreducible representations of the Poincaré group
are derived. The commutation relations are checked, both hermiticity and self-adjointness are
established, and reflection positivity of the kernels is verified.

I. INTRODUCTION

This paper discusses how relativistic invariance is realized in Euclidean formulations of relativistic quantum theory.
In a quantum theory relativistic invariance means that quantum observables, which are probabilities, expectation
values and ensemble averages, have the same value for equivalent experiments that are performed in different inertial
coordinate systems. This means that experiments performed in an isolated system cannot be used to distinguish
inertial coordinate systems. In special relativity different inertial coordinate systems are related by the subgroup of
Poincaré group connected to the identity. In 1939 Wigner [1] showed that a necessary and sufficient condition for
a quantum system to be relativistically invariant is that vectors representing equivalent quantum states in different
inertial coordinate systems are related by a unitary ray representation of this subgroup on the Hilbert space of the
quantum theory.

Relativistically invariant quantum theories are needed to study physics on distance scales that are small enough to
be sensitive to the internal structure of a nucleon. This is because in order to get wavelengths short enough to resolve
the internal structure of a nucleon it is necessary to transfer a momentum to the nucleon that is comparable to or
larger than its mass scale.

In quantum theories time evolution is generated by a one-parameter unitary group. The infinitesimal generator of
this group is the Hamiltonian, which is a positive self-adjoint operator on the Hilbert space of the quantum theory.
Because the spectrum of the Hamiltonian, time can be analytically continued to the lower-half complex time plane.
For imaginary times, t → −iτ , the unitary time evolution group becomes a contractive Hermitian semigroup. For
any fixed τ > 0, e−Hτ has the same eigenvectors as the Hamiltonian, and the eigenvalues λ of H are related to the
eigenvalues η of e−Hτ by λ = − ln(η)/τ . This implies that it is possible to solve dynamical problems directly in a
Euclidean representation. For some applications it is enough to replace H by e−τH . This is a well-behaved bounded
operator with a spectrum on the unit interval [0, 1]; the parameter τ > 0 can be adjusted to be sensitive to different
parts of the spectrum of H. Relativistic invariance normally requires an analytic continuation back to real time.
These observations provide the motivation for investigating Euclidean approaches to relativistic quantum field theory
and quantum mechanics.

Euclidean approaches were first advocated by Schwinger [2][3] who used the spectral condition in time-ordered
Green’s functions to establish the existence of an analytic continuation to imaginary times. Independently, axiomatic
treatments of quantum field theory [4][5] led to an understanding of the analytic properties of vacuum expectation
values of products of fields, also based on the spectral condition. The Euclidean approach to quantum field theory
was advocated by Symanzik [6][7], and developed by Nelson [8]. Osterwalder and Schrader [9][10] identified properties
of Euclidean covariant distributions that are sufficient to reconstruct a relativistic quantum field theory. Two obser-
vations that are contained in the work of Osterwalder and Schrader are (1) that an explicit analytic continuation is

∗This work supported by the U.S. Department of Energy, Office of Science, Grant #DE-SC16457



2

not necessary to construct a relativistic quantum theory and (2) the reconstruction of a relativistic quantum theory
is not limited to local field theories. The discussion that follows is motivated by these two observations.

The Poincaré and four-dimensional Euclidean groups are related because the parameters of both groups can be
analytically continued and the covering group of the resulting complex groups are identical, SL(2,C) × SL(2,C).
What this means is that the real Poincaré group can be considered to be a complex subgroup of the complex Euclidean
group, or conversely, the real Euclidean group can be considered to be a complex subgroup of the complex Poincaré
group. These identifications imply formal relations between the infinitesimal generators of the Poincaré group and
the real Euclidean group [11][12]. Specifically, if P 0

e ,Pe, J
ij
e , J

0i
e satisfy the commutation relations of the Euclidean

Lie Algebra, then the operators P 0
m = −iP 0

e ,Pm = Pe, J
ij
m = J ije , J

0i
m := −iJ0i

e , will satisfy the commutation relations
of the Poincaré Lie Algebra. However, because of the factors of i, both sets of operators cannot be self-adjoint on the
same representation of the Hilbert space.

Osterwalder and Schrader construct a new Hilbert space representation where the Poincaré generators become self
adjoint. Osterwalder and Schrader start with a representation of a Hilbert space defined with a Euclidean covariant
kernel. On this space the Euclidean transformations are norm preserving which defines a unitary representation of the
Euclidean group. Next they choose an arbitrary time direction and multiply the final Euclidean time variables in this
kernel by an operator that reverses the sign of all of the final Euclidean times. Introducing this time reflection in the
Euclidean kernel breaks the Euclidean invariance and has the effect of making the Poincaré generators constructed
from the Euclidean generators Hermitian on this space. The integration variables remain unchanged - they include the
Euclidean times. The problem is that the resulting quadratic form cannot be positive for all Euclidean test functions.
This is easily seen by taking functions with positive time support and extending them to be even or odd under time
reflection. Since the quadratic forms will have opposite signs, they cannot both have positive norm with this new
inner product. This flaw is fixed by projecting the test functions on a suitable subspace. The subspace identified
by Osterwalder and Schrader is the subspace of functions of Euclidean space-time variables with support for positive
absolute and relative Euclidean times. The Euclidean kernels are called reflection positive if the norms with respect
to the inner product with the Euclidean time reflection is non-negative on this subspace. Reflection positivity is a
constraint on the Euclidean distributions [13]. This construction is a specific application of a general construction
based on an abstract notion of reflection positivity [11][12].

Because this projection is independent of the form of the Euclidean kernel, cluster properties, which are an important
physical requirement, can be expressed entirely in terms of properties of the kernel - the range of the projector does not
change. Cluster properties can be a difficult constraint to satisfy in some representations of relativistically quantum
mechanics [14][15][16], but it can be easily achieved in the Euclidean approach.

The restriction to positive relative time is because the Euclidean kernels for irreducible representations of the
Poincaré group become singular for zero relative times. Since identical particles have an exchange symmetry, this is
reflected in the symmetry properties of the Euclidean kernel. As long as the relative time supports are disjoint, the
symmetry can be used to reorder the variables so the support satisfies the positive relative-time condition. What
separates relativistic quantum theory from local quantum field theory is whether the symmetries involve all of the
coordinates in the kernel or just separately involve the initial and final coordinates. This will be discussed in more
detail below.

Reflection positivity is a strong constraint, particularly when it is combined with Euclidean covariance and cluster
properties. One consequence is that it implies the spectral condition that Schwinger originally used to justify the
existence of an analytic continuation. The advantage of the Osterwalder-Schrader reconstruction is that this analytic
continuation is never explicitly needed.

In this paper a Euclidean relativistic theory is defined by a finite or infinite collection of Euclidean covariant
tempered distributions

Sm:n(xm, · · · , x1; y1, · · · , yn). (1)

These kernels contain the dynamics. The kernels satisfy the permutation symmetry,

Sm:n(xm, · · · , x1; y1, · · · , yn) = (±)|σ|Sm:n(xσ(m) · · · , xσ(1); y1, · · · , yn)

= (±)|σ|Sm:n(xm, · · · , x1; yσ(1), · · · , yσ(n)) (2)

where σ() is a permutation on m or n objects, |σ| is 0 if σ is an even permutation and 1 if it is an odd permutation.
The + sign is for Bosons and the (−) sign is for Fermions. For local quantum field theories the collection must be
infinite, Sm:n = Sk:l whenever m+ n = k + l, and the permutation symmetry is with respect to all n+m variables.
In (1-2) the xn can also include spin degrees of freedom.

The symmetry in the local field theory case arises because the domain of analyticity, that comes from the spectral
condition, can be extended by complex Lorentz transformations. The extended domain of analyticity includes real
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space-like separated points (Jost points) that allow the local fields to be reordered [4], relating Green’s functions with
permuted arguments. This symmetry is not assumed in this work. One consequence of relaxing this condition is that
it is possible to have different N -point Green’s functions for different numbers of initial and final coordinates.

The setting for a quantum theory is a Hilbert space. A dense set of vectors in the Euclidean representation of the
Hilbert space are sequences of Schwartz test functions of Euclidean space-time variables

{ψn(x1 · · ·xn)}Nn=0 (3)

that vanish unless the Euclidean times satisfy 0 < x0
1 < x0

1 < · · · < x0
n.

The Hilbert space inner product is

〈ψ|φ〉 =
∑
mn

∫
d4xm · · · d4x1d

4y1 · · · d4ynψ
∗
m(θxm, · · · , θx1)×

Sm:n(xm, · · · , x1; y1, · · · , yn)φn(y1, · · · , yn) (4)

where θ represents Euclidean time reflection, θ(x0
i ,xi) := (−x0

i ,xi) . Because of the assumed symmetry properties
of the Euclidean distributions, as long as the Euclidean time supports in the functions are ordered for one set of
Euclidean times, the permutation symmetry can be used to replace them for one that is ordered as above.

One property of this representation of the Hilbert space, where the inner products has a non-trivial kernel, is that
distributions like delta functions represent normalizable vectors.

For this to be a Hilbert space scalar product, this quantity must be non-negative whenever {ψm} = {φn}. This
condition is called reflection positivity. In general there can be 0-norm vectors. The Hilbert space vectors are Cauchy
sequences of equivalence classes of vectors, where two vectors are in the same class if the norm of their difference
vanishes. This distinction will be ignored in what follows. For free particles, reflection positivity restricts the form
of the allowed distributions [17][18][19]. They are singular when the relative Euclidean coordinates vanish. The
restriction picks a domain where the scalar products are finite.

Because the Euclidean time reflection breaks the Euclidean invariance, both Euclidean time translation and rotations
in Euclidean space-time planes are no longer unitary on this space. These transformations are nevertheless defined on
this space with restricted domains; they represent translations in imaginary time and boosts with imaginary rapidity.
The infinitesimal forms of these elementary Euclidean transformations can be used to construct both the Hamiltonian
and Lorentz boost generators.

The purpose of this work is to give a detailed discussion of how relativistic invariance is realized in these theories.
Rather than consider a general set of Euclidean covariant kernels, this work is limited to Euclidean representations
of irreducible representation of the Poincaré group [20]. There are two motivations for this. The first is that the
kernels for these representations are known, so it is possible to understand domain issues related to the properties of
the kernel and give explicit representations for the Poincaré generators. The second motivation is that any unitary
representation of the Poincaré group can be decomposed into a direct integral of irreducible representations. In a
relativistic quantum theory these can be identified with the complete set of one-body states plus multi-particle in or
out scattering states. These states either transform irreducibly or as tensor products of irreducible representations.
The kernel of a general interacting model should be related to the direct integral of irreducible kernels by a unitary
transformation. The construction of this direct integral from a general set of Euclidean covariant distributions is the
relativistic analog of diagonalizing the Hamiltonian in non-relativistic quantum mechanics. This will not be considered
in this work.

In the next section the Poincaré group and its relation to the Euclidean group is discussed. In section three unitary
representations of the Poincaré group are discussed, along with structure of positive mass irreducible representations.
Section 4 contains explicit forms of Euclidean covariant kernels of irreducible representations of the Poincaré group
for any mass and spin. They are shown to be reflection positive. Explicit forms for all the Poincaré generators are
constructed, commutation relations are verified, and the generators are shown to be symmetric with respect the inner
product with the Euclidean time reflection. Section 5 discuss the self-adjointness of the Hamiltonian and rotationless
boost generators. Section 6 has a brief discussion of finite Poincaré transformations. The results are summarized in
section 7.

II. BACKGROUND

The Poincaré group is the group of space-time transformations that relate different inertial reference frames in the
theory of special relativity. It is the symmetry group that preserves the proper time τab, or proper distance, dab,
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between any two events with space-time coordinates xµa , x
µ
b

−τ2
ab = d2

ab = ηµν(xa − xb)µ(xa − xb)ν , (5)

where η11 = η22 = η33 = −η00 = 1, ηµν = 0 for µ 6= ν is the Minkowski metric tensor. Repeated indices are assumed
to be summed. The most general point transformation, x′µ = fµ(x) satisfying (5) has the form

xµ → x′µ = Λµνx
ν + aµ (6)

where Λµν is a Lorentz transformation satisfying

ηµν = ΛαµηαβΛβν

or in matrix form

η = ΛtηΛ. (7)

Equations (6) and (7) are relativistic generalizations of the fundamental theorem of rigid body motion, which as-
serts that any motion that preserves the distance between points in a rigid-body in a composition of an orthogonal
transformation and a translation.

The full Poincaré group contains discrete transformations that are not associated with special relativity. Equation
(7) implies that

det(Λ)2 = 1 and (Λ0
0)2 = 1 +

∑
i

(Λ0
i )

2. (8)

This means that the Lorentz group can be decomposed into four topologically disconnected components

• det(Λ) = 1, (Λ0
0) ≥ 1; includes identity

• det(Λ) = −1, (Λ0
0) ≥ 1; includes space reflection

• det(Λ) = −1, (Λ0
0) ≤ −1; includes time reversal

• det(Λ) = 1, (Λ0
0) ≤ −1; includes space-time reversal .

Since the discrete symmetries of space reflection and time reversal are not symmetries of the weak interaction, the
symmetry group associated with special relativity is normally considered to be the subgroup of Poincaré transforma-
tions that is continuously connected to the identity. This subgroup contains the active transformations that can be
experimentally realized.

The relation between the Lorentz group and the four-dimensional orthogonal group can be understood by expressing
Minkowski, xµ, and Euclidean, xµe , four vectors as 2× 2 matrices:

Xm = xµσµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
xµ =

1

2
Tr(Xσµ) (9)

Xe = xµeσeµ =

(
ix0
e + x3 x1 − ix2

x1 + ix2 ix0
e − x3

)
xµe =

1

2
Tr(Xeσ

†
eµ). (10)

where σi = σei are the Pauli matrices, σ0 is the identity and σe0 = iσ0. The determinants of these matrices are
related to the Minkowski and Euclidean line elements respectively:

det(Xm) = (x0)2 − x · x det(Xe) = −
(
(x0
e)

2 + x · x
)
. (11)

The linear transformations that preserve the determinant and hermiticity of Xm have the form

Xm → X ′m = ±AXmA
† det(A) = 1. (12)

The (-) sign represents a space-time reflection, which is not considered part of the symmetry group of special relativity.
The group of complex 2× 2 matrices with det(A) = 1 is SL(2,C). Similarly linear transformations corresponding to
real four-dimensional orthogonal transformations have the general form

Xe → X ′e = AXeB
t A,B ∈ SU(2). (13)



5

Transformations of the form

Xe → X ′e = AXeB
t Xm → X ′m = AXmB

t (14)

with both A and B in SL(2,C) preserve both the Minkowski and Euclidean line elements. However they do not
preserve the reality of the four vectors. They represent complex Lorentz or orthogonal transformations.

This shows that the covering group of both the complex Lorentz and complex orthogonal group is SL(2,C) ×
SL(2,C). This means that the real Lorentz group can be considered to be a subgroup of the complex orthogonal
group; similarly the real orthogonal group can be considered to be a complex subgroup of the Poincaré group. The
relevant relation that will be exploited in this work is that Euclidean rotations that involve a space and the Euclidean
time coordinate can be identified with Lorentz boosts with complex rapidity.

For the full Poincaré group it is necessary to include translations. Euclidean time translations by τ are identified
with Minkowski time translations with t = −iτ .

III. UNITARY REPRESENTATIONS OF THE POINCARÉ GROUP

In this section Poincaré group elements are labeled by (Λ, A) where Λ is a SL(2,C) matrix and A is a 2×2 Hermitian
matrix representing a translation. In this representation Poincaré transformations have the form

X ′ = ΛXΛ† +A (15)

where the group multiplication law is

(Λ2, A2)(Λ1, A1) = (Λ2Λ1,Λ2A1Λ†2 +A2). (16)

Four vector representations of these equations are

xµ′ = Λµνx
ν + aµ (17)

(Λµν , a
µ) = (Λµ2αΛα1 ν ,Λ

µ
2αa

α
1 + aµ2 ), (18)

where the four vector and 2× 2 representations are related by

aµ :=
1

2
Tr(σµA) Λµν :=

1

2
Tr(σµΛσνΛ†). (19)

SL(2,C) is a six parameter group. It has six independent one-parameter subgroups

Λr(θθθ) = e
i
2σσσ·θθθ Λb(ρρρ) = e

1
2σσσ·ρρρ (20)

corresponding to rotations about three different axes and rotationless Lorentz boosts in three different directions.
In these expressions θθθ represents the angle and axis of a rotation while ρρρ represents the rapidity and direction of a
rotationless boost. The polar decomposition expresses a general SL(2,C) matrix Λ as a product of a rotation (Λr
unitary) followed by rotationless boost (Λb positive Hermitian):

Λ = ΛbΛr (21)

where

Λb := (ΛΛ†)1/2 = Λb(ρρρ) Λr := (ΛΛ†)−1/2Λ = Λr(θθθ). (22)

A unitary representation of the Poincaré group (inhomogeneous SL(2,C)) is a set of unitary operators U(Λ, A),
labeled by elements of SL(2,C) satisfying

U(Λ2, A2)U(Λ1, A1) = U(Λ2Λ1,Λ2A1Λ†2 +A2) (23)

U(I, 0) = I (24)

U†(Λ, A) = U−1(Λ, A) = U(Λ−1,−Λ−1A(Λ†)−1). (25)
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The Poincaré group is a 10 parameter group. Infinitesimal generators are the 10 self-adjoint operators defined by

H = i
d

da0
U(I, a0σ0)|a0=0

(26)

P i = −i d
daj

U(I, ajσj)|ai=0
(27)

J i = −i d
dθ
U(ei

θ
2σj , 0)|θ=0

(28)

Ki = −i d
dρ
U(e

ρ
2σj , 0)|ρ=0

(29)

where there is no sum in (27) over the repeated j, and j ∈ {1, 2, 3} in (27-29). The group representation property
(23) implies that these generators satisfy commutation relations

[J i, Jj ] = iεijkJ
k [J i, P j ] = iεijkP

k [J i,Kj ] = iεijkK
k (30)

[Ki,Kj ] = −iεijkJk [J i, H] = 0 [P i, H] = 0 (31)

[Kj , H] = iP j [Ki, P j ] = iδijH. (32)

These operators are components of a four vector, Pµ, and an anti-symmetric tensor operator, Jµν ,

Pµ = (H,P) Jµν =

 0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

 . (33)

There are two independent polynomial invariants

M2 = (P 0)2 −P2 = −PµPµ (34)

and

W 2 = WµWµ Wµ = −1

2
εµναβPνJαβ . (35)

where Wµ is called the Pauli-Lubanski vector. When M 6= 0 the spin is defined by

S2 = W 2/M2. (36)

A spin vector can be defined by an operator rotationless (canonical) boost that transforms the angular momentum
tensor to the rest frame:

si = εijkΛ−1
c (P )jµΛ−1

c (P )kνJ
µν (37)

where

Λc(P )µν =

(
V 0 V
V I + V⊗V

1+V 0

)
V µ = Pµ/M (38)

and Pµ and M are considered operators. Note that Λc(p) = Λb(ρρρ) with

V = P/M = ρ̂ρρ sinh(ρ). (39)

This spin vector is called the canonical spin; other types of spin vectors (helicity, light-front spin) are related to
the canonical spin by momentum dependent rotations. For the purpose of this work it is sufficient to consider the
canonical spin. The canonical spin can also be expressed in terms of the Pauli Lubanski vector:(

0
sc

)
= − 1

2M
Λ−1
c (P )µνW

µ. (40)
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The components of the spin satisfy SU(2) commutations relations:

[si, sj ] = iεijks
k. (41)

With these definitions, for M > 0, M2, s2,P, sz are a maximal set of commuting self-adjoint functions of the Poincaré
generators. The spectrum of each component of P is the real line since each component of P can be boosted to any
value. Similarly the spectrum of spins are restricted to be integral or half integral as a consequence of the SU(2)
commutations relations. In a general system these commuting observables are not complete; they can be supplemented
by additional Poincaré-invariant degeneracy quantum numbers, which will be denoted by α. A basis for the Hilbert
space are the simultaneous eigenstates of M,S2, α,P, sz,

|(m, s, α)p, µ〉. (42)

Because these vectors are constructed out of eigenvalues of functions of Pµ and Jµν , which have well-defined the
Poincaré transformation properties, the Poincaré transformation properties of these basis state follow from the defi-
nitions

U(Λ, a)|(m, s, α)p, µ〉 = eiΛp·a|(m, s, α)Λp, ν〉Dj
νµ[Rws(Λ, p)]

√
ωm(Λp)

ωm(p)
(43)

where, Rcw(Λ, p) := Λ−1
c (Λp)ΛΛc(p) is the canonical-spin Wigner rotation, Λc(p) = e

1
2ρρρ·σσσ where ρρρ is the rapidity of a

particle of mass m and momentum p, and ωm(p) :=
√
m2 + p2 is the energy of the particle.

The Wigner D-function is the finite dimensional unitary representation of the rotation group in the |s, µ〉 basis [21]:

Ds
m,m′ [R] = 〈s, µ|U(R)|s, µ′〉 =

s+µ∑
k=0

√
(s+ µ)!(s+ µ′)!(s− µ)!(s− µ′)!

k!(s+ µ′ − k)!(s+ µ− k)!(k − µ− µ′)!
Rk++R

s+µ′−k
+− Rs+µ−k−+ Rk−µ−µ

′

−−

where

R =

(
R++ R+−
R−+ R−−

)
= e

i
2θθθ·σσσ = σ0 cos(

θ

2
) + iθ̂θθ · σσσ sin(

θ

2
) (44)

is a SU(2) matrix. Because Ds
µν [R] is a degree 2s polynomial in the matrix elements of R, and R = ei

θθθ·σσσ
2 is an entire

function of the angles, θθθ, it follows that Ds
µ,µ′ [e

iθθθ·σσσ2 ] is an entire function of all three components of θθθ. This means
that the group representation property∑

µ′′

Ds
µ,µ′′ [R2]Ds

µ′′,µ′ [R1]−Ds
µ,µ′ [R2R1] = 0, (45)

and the formulas for adding angular momenta

Ds
µ,µ′ [R]−

∑
µ1µ2µ′1µ

′
2

〈s, µ|s1, µ1, s2, µ2〉Ds1
µ1,µ′1

[R]Ds2
µ2,µ′2

[R]〈s1, µ
′
1, s
′
2, µ
′
2|s, µ′〉 = 0 (46)

and

Ds1
µ1,µ′1

[R]Ds2
µ2,µ′2

[R]−
∑
sµµ′

〈s1, µ1, s2, µ2|s, µ〉Ds
µ,µ′ [R]〈s, µ′|s1, µ

′
1, s2, µ

′
2〉 = 0, (47)

which hold for real angles, can be analytically continued to complex angles. This means that (45-47) also hold when
the SU(2) matrices R are replaced by SL(2,C) matrices. In these expressions, 〈s, µ|s1, µ1, s2, µ2〉, are SU(2) Clebsch-
Gordan coefficients. While the analytic continuation preserves the group representation and angular momentum
addition properties, it does not preserve unitarity.
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IV. EUCLIDEAN FORMULATION

The common property of any relativistic quantum theory is that it can be decomposed into a direct integral of
irreducible representations. The structure of irreducible representations of the Poincaré group in the Euclidean rep-
resentation can be understood by starting with Minkowski-space irreducible representations of the Poincaré group.
This work considers only positive-mass positive-energy representations. These can be expressed in a basis of simul-
taneous eigenstates of the mass, spin, linear momentum and z-component of the canonical spin. The action of the
unitary representation of the Poincaré group on this basis is given by (43). This is unitary for basis vectors with the
normalization:

〈(m′, s′)p′, µ′|(m, s)p, µ〉 = δm′mδs′sδ(p
′ − p)δµ′µ. (48)

Because of the unitarity of Rwc(Λ, p), the SU(2) Wigner rotation can be expressed in two equivalent ways:

Rwc(Λ, p) = Λ−1
c (Λp)ΛΛc(p) = Λ†c(Λp)(Λ

†)−1Λ†−1
c (p). (49)

The SL(2,C) group representation property (45) implies that the unitary representation of the Wigner rotation can
be factored into a product of three finite-dimensional representations of SL(2,C) in two different ways:

Ds
νµ[Rwc(Λ, p)] =

∑
αβ

Ds
να[Λ−1

c (Λp)]Ds
αβ [Λ]Ds

βµ[Λc(p)] (50)

or

Ds
νµ[Rwc(Λ, p)] =

∑
αβ

Ds
να[Λ†c(Λp)]D

s
αβ [(Λ†)−1]Ds

βµ[(Λ†c)
−1(p)]. (51)

These relations can be used to rewrite equation (43) in terms of new Lorentz covariant basis states:

U(Λ, a)
∑
α

|(m, j)p, α〉Ds
αµ[Λ−1

b (p)]
√
ωm(p)︸ ︷︷ ︸

|(m,j)p,µ〉cov

=

eiΛp·a
∑
β

∑
α

|(m, j)Λp, α〉Ds
αβ [Λ−1

c (Λp)]
√
ωm(Λp)︸ ︷︷ ︸

|(m,j)Λp,β〉cov

Ds
βµ[Λ] (52)

or

U(Λ, a)
∑
α

|(m, j)p, α〉Ds
αµ[Λ−†c (p)]

√
ωm(p)︸ ︷︷ ︸

|(m,j)p,µ〉cov∗

=

eiΛp·a
∑
β

∑
α

|(m, j)Λp, α〉Ds
αβ [Λ†c(Λp)]

√
ωm(Λp)︸ ︷︷ ︸

|(m,j)Λp,β〉cov∗

Ds
βµ[(Λ†)−1]. (53)

These expressions replace the states (42) that transform covariantly with respect to the Poincaré group with states
that transform covariantly with respect to SL(2,C). The transformations relating the Lorentz and Poincaré covariant
representations are invertible, however there are two distinct Lorentz covariant representations, because while R =
(R†)−1 for R ∈ SU(2), the corresponding representations in SL(2,C) are inequivalent. These two representations are
called right and left handed representations for reasons that will become apparent.

In the Lorentz covariant representations, (52) and (53), this equivalence can be used to show that the Hilbert space
inner product of two SL(2,C) covariant wave functions has a non-trivial kernel

〈ψ|φ〉 =
∑
µ

∫
〈ψ|(m, j)p, µ〉dp〈(m, j)p, µ|φ〉 =



9∫ ∑
µν

〈ψ|(m, j)p, µ〉covDj
µν [p · σ]2δ(p2 +m2)θ(p0)d4pcov〈(m, j)p, ν|φ〉 (54)

〈ψ|φ〉 =

∫ ∑
µ

〈ψ|(m, j)p, µ〉dp〈(m, j)p, µ|φ〉 =

∫ ∑
µν

〈ψ|(m, j)p, µ〉cov∗Dj
µν [Πp · σ]2δ(p2 +m2)θ(p0)d4pcov∗〈(m, j)p, ν|φ〉 (55)

where Λc(p)Λ
†
c(p) = σ ·p and Λ−1

c (p)(Λ†c)
−1(p) = Πp ·σ, was used in these equations. Π is the space reflection operator

and p ·σ = ωm(p)σ0 +p ·σσσ. These equations explain why (54) and (55) are called right and left handed representations.
These kernels are, up to normalization, spin-s two-point Wightman functions [4].

The motivation for considering these SL(2,C) covariant representations is that they are naturally related to the
corresponding Euclidean covariant representations.

To show this let f(xe, µ) and g(ye, ν) be functions of Euclidean space-time variables and spins with positive
Euclidean-time support. Consider the following Euclidean covariant kernel:

Sse(xe, µ; ye, ν) :=

∫
d4p

2

(2π)4

eipe·(xe−ye)

p2
e +m2

Ds
µν(pe · σe). (56)

The physical Hilbert space inner product (4) for this Euclidean Green’s function has the form∫ ∑
µν

d4xed
4yef

∗(θxe, µ)Sse(xe, µ; ye, ν)g(ye, ν) =

∫ ∑
µν

d4pef
∗(θxe, µ)

2

(2π)4

eipe·(xe−ye)

p2
e +m2

Ds
µν(pe · σe)g(ye, ν) =

∫ ∑
µν

ψ∗(p, µ)
dp

ωm(p)
Ds
µν(p · σ)φ(p, ν) (57)

where

ψ∗(p, µ) :=
1

(2π)3/2

∫
dxdτeip·x−ωm(p)τf∗(x, τ, µ) (58)

and

φ(p, ν) :=
1

(2π)3/2

∫
dxdτe−ip·x−ωm(p)τg(x, τ, ν). (59)

The Euclidean time-support condition ensures that the Laplace transforms with respect to the Euclidean times in
(58) and (59) are well defined. The resulting kernel in (57) is identical to the covariant kernel in (54) after performing
the integrals over the p0

e.
This shows that the “Euclidean” inner product (57) can be identified with the corresponding Lorentz covariant

inner product, which itself is identical to the original Poincaré covariant inner product.
This means that

Ssr(xe, µ; ye, ν) :=

∫
2d4p

(2π)4

eipe·(xe−ye)

p2
e +m2

Ds
µν(pe · σe) (60)

is a Euclidean covariant reflection positive kernel for right handed representations of mass m and spin s respectively.
The corresponding kernel for left-handed representations is

Ssl (xe, µ; ye, ν) :=

∫
2d4p

(2π)4

eipe·(xe−ye)

p2
e +m2

Ds
µν(Πpe · σe). (61)
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Space reflection interchanges right and left-handed representations. The space reflection operator does not commute
with the Euclidean covariant kernel. This implies that space reflected states will not transform correctly under Lorentz
transformations in these Lorentz covariant representations. Kernels for systems that allow a linear representation of
space reflection can be constructed by taking direct sums of right and left handed kernels.

The kernels (60-61) can be evaluated analytically using the methods in [22]. The results are

Ssr(ze, µ, ν) :=
2

(2π)4

∫
d4p

p2
e +m2

Ds
µν(pe · σe)eip·ze =

Ds
µν(−i∇ze · σe)

2m2

(2π)2

K1(m
√
z2

0 + z2)

m
√
z2

0 + z2
(62)

Ssl (ze, µ, ν) :=
2

(2π)2

∫
d4p

p2
e +m2

Ds
µν(Πpe · σe)eipe·ze =

Ds
µν(−iΠ∇ze · σe)

2m2

(2π)2

K1(m
√
z2

0 + z2)

m
√
z2

0 + z2
(63)

where ze = xe−ye. Note that K1(η)
η behaves like 1/η2 near the origin. Since Ds

µν(−i∇ze ·σe) is a degree 2s polynomial

in −i∇ze, these kernels have power law singularities at the origin, but fall off exponentially for large values of z2
e , The

restriction of the support of the vectors to positive Euclidean time ensures that z2
e > 0, so the singularity at ze = 0

never causes a problem. These Green’s functions are reflection positive on this space. This is because Ds
µν(p · σ)

factors into a product of a matrix and its adjoint:

Ds
µν(p · σ) =

∑
α

Ds
µα(Λc(p))D

s
αν(Λc(p))

†. (64)

The treatment of relativity follows from the relation between the four dimensional Euclidean group and the asso-
ciated complex subgroup of the Lorentz group discussed in section 2. Consider the two matrices

p · σ :=

(
p0 + p2 p1 − ip2

p1 + ip2 p0 − p3

)
pe · σe :=

(
ip0
e + p2

e p1
e − ip2

e

p1
e + ip2

e ip0
e − p3

e

)
. (65)

The SL(2,C)× SL(2,C) transformation properties of these matrices (denoted by P ) are

P → P ′ = APBt. (66)

The associated complex 4× 4 Lorentz and four-dimensional orthogonal transformation matrices are

Λ(A,B)µν =
1

2
Tr(σµAσνB

t) O(A,B)µν =
1

2
Tr(σ†eµAσeνB

t). (67)

For ordinary rotations A = B∗ = ei
λ
2 n̂. For rotations about the ẑ axis

O(A,A∗)(λ) =

 1 0 0 0
0 cos(λ) sin(λ) 0
0 − sin(λ) cos(λ) 0
0 0 0 1

 (68)

and

ΘO(A,A∗)(λ)Θ = O(A,A∗)(λ). (69)

For real rotations in Euclidean space-time planes A = Bt = ei
λ
2 n̂·σσσ. For the case of the x0

e − ẑ plane

O(A,At)(λ)x =

 cos(λ) 0 0 sin(λ)
0 1 0 0
0 0 1 0

− sin(λ) 0 0 cos(λ)

 (70)
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ΘOt(A,At)(λ)Θ = O(A,At)(λ). (71)

While ordinary 3-dimensional rotations are the same for p · σ or pe · σe, real rotations in Euclidean space time planes
are interpreted as rotationless Lorentz boosts with imaginary rapidity.

These identifications imply the following algebraic relations between the infinitesimal generators of the four dimen-
sional orthogonal group and the Lorentz group:

Pm = Pe J ijm = J ije (72)

Hm = iHe Ki
m = −iJ0i

e (73)

Because of the factor of i, if the Euclidean generators are self-adjoint operators on a representation of the Hilbert
space, the constructed Poincaré generators cannot be self-adjoint on that representation of the Hilbert space.

In the spinless case (s = 0) the identifications (68-71) result in the following expressions for the infinitesimal
generators of the Poincaré group on the Hilbert space with the time reflection:

HΨ(xe) =
∂

∂x0
e

Ψ(xe) PΨ(xe) = −i ∂

∂xe
Ψ(xe) (74)

JΨ(xe) = −ix×∇∇∇xΨ(xe) KjΨ(xe) = (xj
∂

∂x0
e

− x0
e

∂

∂xj
)Ψ(xe). (75)

It is straightforward to demonstrate that these operators satisfy the Poincaré commutations relations (30-32). For
example

[Ki, H] = [xi
∂

∂x0
e

− x0
e

∂

∂xi
,
∂

∂x0
e

] = i(−i ∂
∂xi

) = iP i (76)

which agrees with (32). The other commutators can be checked similarly.
The Euclidean time reversal of the final state makes both the Hamiltonian H and the boost generators K formally

Hermitian with respect to the scalar product (54). The non-trivial observation is that even an infinitesimal rotation
in a Euclidean space time plane can map functions with positive Euclidean time support to functions that violate the
support condition. This maps Hilbert space vectors out of the Hilbert space. The resolution of this problem will be
discussed in section 6.

To show the hermiticity of the rotationless boost generators (75) note that rotational invariance of the Euclidean
Green’s function in Euclidean space-time planes means that the Euclidean rotation generators commute with the
Euclidean Green’s function:

(−ixi ∂

∂x0
e

+ ix0
e

∂

∂xi
)S0
e (x− y) = S0

e (x− y)(−iyi ∂
∂y0

e

+ iy0
e

∂

∂yi
). (77)

Multiplying both sides by i gives

(xi
∂

∂x0
e

− x0
e

∂

∂xi
)S0
e (x− y) = S0

e (x− y)(yi
∂

∂y0
e

− y0
e

∂

∂yi
). (78)

Next consider the inner product

〈f |Ki|g〉 =

∫
d4xd4yf∗(x,−x0

e)S
0
e (x− y)(yi

∂

∂y0
e

− y0
e

∂

∂yi
)g(y, y0

e). (79)

Using (78) in (79) gives

=

∫
d4xd4yf∗(x,−x0

e)(x
i ∂

∂x0
e

− x0
e

∂

∂xi
)S0
e (x− y)g(y, y0

e). (80)

Integrating by parts again gives

= −
∫
d4xd4y(xi

∂

∂x0
e

+ x0
e

∂

∂xi
)(θf)∗(x, x0

e)S
0
e (x− y)g(y, y0

e). (81)
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Finally factoring the time reversal out of f gives

−(xi
∂

∂x0
e

+ x0
e

∂

∂xi
)θf∗(x, x0

e) = θ

(
(xi

∂

∂x0
e

− x0
e

∂

∂xi
)f∗(x, x0

e)

)
(82)

which when used in (81) gives

〈f |Ki|g〉 =

∫
d4xd4yf∗(x,−x0

e)S
0
e (x− y)(yi

∂

∂y0
e

− y0
e

∂

∂yi
)g(y, y0

e) =

∫
d4xd4yθ((xi

∂

∂x0
e

− x0
e

∂

∂xi
)f(x, x0

e))
∗S0

e (x− y)g(y, y0
e) = 〈Kif |g〉. (83)

This shows that Ki is a Hermitian operator on this representation of the Hilbert space.
The other non-trivial operator is the Hamiltonian (74). In this case

〈f |H|g〉 =

∫
d4xd4yf∗(x,−x0

e)S
0
e (x− y)

∂

∂y0
e

g(y, y0
e) =

−
∫
d4xd4yf∗(x,−x0

e)
∂

∂y0
e

S0
e (x− y)g(y, y0

e) =

∫
d4xd4yf∗(x,−x0

e)
∂

∂x0
e

S0
e (x− y)g(y, y0

e) =

−
∫
d4xd4y

∂

∂x0
e

f∗(x,−x0
e)S

0
e (x− y)g(y, y0

e) =

∫
d4xd4y

∂f∗

∂x0
(x,−x0

e)S
0
e (x− y)g(y, y0

e) = 〈Hf |g〉. (84)

The Euclidean time reversal does not change the linear or angular momentum operators. These methods can be used
to demonstrate that all of the s = 0 generators (74-75) are Hermitian in this representation of the Hilbert space and
satisfy the Poincaré Lie algebra.

V. SPIN

In this section explicit formulas for generators for particles with arbitrary spin are derived, generalizing the method
used in the previous section for scalar particles.

In the original Poincaré covariant theory the spin is associated with the observable that is the ẑ-component of the
spin that would be measured in the particle’s rest frame if it was transformed to the rest frame with a rotationless
Lorentz transformation. The spin in the covariant wave function is related to this spin by multiplying by one of the
SL(2,C) matrices, Ds

µν(Λc(p)
−1) or Ds

µν(Λc(p)
†). These transformations lead to distinct right or left handed spinors.

In discussing spin it is important to understand that the Poincaré covariant spinors and the Lorentz covariant spinors
are related, but different. Representations of the Poincaré generators for each type of covariant spin must be considered
separately. In addition, for each type of covariant spinor there are invariant linear functionals that define dual spinors.
The dual spinors are spinor analogs of covariant and contravariant vectors. In conventional treatments [4][23] [24] the
right-handed spinors are denoted by ξa, left handed spinors are denoted by ξȧ and their duals are denoted by ξa and
ξȧ respectively.

The first step is to consider the SL(2,C) transformation properties of the Euclidean kernels for right and left handed
covariant spinors and their duals.

Euclidean four vectors can be represented by any of the four matrices:

pe · σe = pµeσeµ pe · (σ2σeσ2) = pµeσ2σeµσ2 pe · σte = pµeσ
t
eµ pe · (σ2σ

t
eσ2) = pµeσ2σ

t
eµσ2. (85)

The determinant of each of these matrices is (-) the square of the Euclidean length of pe, which is preserved under
linear transformations of the form

P ′ = APBt (86)

where P represents any of the matrices in (85), and A,B ∈ SL(2,C). Real four-dimensional orthogonal transforma-
tions are obtained by restricting A and B to be elements of SU(2).
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The 4× 4 orthogonal matrix O(A,B)µν is related to the pair (A,B) by

O(A,B)µν :=
1

2
Tr(σ†eµAσeνB

t). (87)

It follows that

ApµeσeµB
t = σeµO(A,B)µνp

ν
e = σeµ(O(A,B)pe)

µ. (88)

Multiplying (88) by σ2 on both sides gives

A∗(pe · σ2σeσ2)B† = (O(A,B)p)e · σ2σeσ2. (89)

Taking transposes of the 2× 2 matrices (88) and (89) give

B(peσ
t
e)A

t = σte · (O(A,B)pe) (90)

and

B∗(pe · σ2σ
t
eσ2)A† = σ2σ

t
eσ2 · (O(A,B)pe) (91)

where σ2Aσ2 = A∗ for A ∈ SU(2) was used in (89-91). In all four of these expressions A, B and the orthogonal matrix
O(A,B) are unchanged. All four of the matrices (85) become positive when pe is replaced by the on-shell Minkowski

four momentum, pµm = (
√
p2 +m2,p) and σµe is replaced by σµ.

These matrices appear in the Euclidean covariant kernels for the right and left-handed representations and their
duals. The spin s Euclidean covariant kernels for each type of covariant spinor are:

Sse(xe;µ, ν) =
2

(2π)4

∫
Ds
µν [pe · σe]
p2
e +m2

eipe·xed4pe (92)

Ssed(xe;µ, ν) =
2

(2π)4

∫
Ds
µν [pe · (σ2σeσ2)]

p2
e +m2

eipe·xed4pe (93)

Sse∗(xe;µ, ν) =
2

(2π)4

∫
Ds
µν [pe · σte]
p2
e +m2

eipe·xed4pe (94)

Ssed∗(xe;µ, ν) =
2

(2π)4

∫
Ds
µν [pe · (σ2σ

t
eσ2)]

p2
e +m2

eipe·xed4pe. (95)

The physical Hilbert space inner product associated with each of these kernels is

〈ψe|φe〉 =

∫ ∑
µν

ψ∗e(θx, µ)Sse(xe − ye;µ, ν)φe(y, ν)d4xd4y (96)

〈ψed|φed〉 =

∫ ∑
µν

ψ∗ed(θx, µ)Ssed(xe − ye;µ, ν)φed(y, ν)d4xd4y (97)

〈ψe∗|φe∗〉 =

∫ ∑
µν

ψ∗e∗(θx, µ)Sse∗(xe − ye;µ, ν)φe∗(y, ν)d4xd4y (98)

〈ψed∗|φed∗〉 =

∫ ∑
µν

ψ∗ed∗(θx, µ)Ssed∗(xe − ye;µ, ν)φed∗(y, ν)d4xd4y. (99)

For wave functions with positive Euclidean time support, the p0
e integral can be evaluated by the residue theorem,

closing the contour in the lower half plane. This replaces p0
e by −iωm(p). The kernels become the two-point Minkowski
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Wightman functions [4] for mass m spin s irreducible representations of the Lorentz group. Equations (97) and (99)
are dual representations of the right-handed kernel, while (96) and (98) are dual representations of the left-handed
kernel. σ2 behaves like a metric tensor for the Lorentz covariant spinors, relating the representations (96) and (97)
or (98) and (99). Contraction of the two types of right or left handed spinors are Lorentz invariant. The results of
performing the p0

e integral are

〈ψe|φe〉 =

∫ ∑
µν

f∗m(p, µ)
dpDs

µν [pm · σ]

ωm(p)
gm(p, ν) (100)

〈ψed|φed〉 =

∫ ∑
µν

f∗m(p, µ)
dpDs

µν [pm · σ2σσ2]

ωm(p)
gm(p, ν) (101)

〈ψe∗|φe∗〉 =

∫ ∑
µν

f∗m(p, µ)
dpDs

µν [pm · σ∗]
ωm(p)

gm(p, ν) (102)

〈ψed∗|φed∗〉 =

∫ ∑
µν

f∗m(p, µ)
dpDs

µν [pm · σ2σ
∗σ2]

ωm(p)
gm(p, ν) (103)

where

f∗m(p, µ) :=

∫
d4x

(2π)3/2
ψ∗(x, µ)eip·x−ωm(p)x0

(104)

gm(p, ν) :=
d4y

(2π)3/2
ψ(y, ν)e−ip·y−ωm(p)y0 (105)

for each type of spinor wave function.
Each of the spin matrices, Ds

µν [pm · σ], Ds
µν [pm · σ2σσ2], Ds

µν [pm · σ∗] and Ds
µν [pm · σ2σ

∗σ2] are positive Hermitian
matrices, so the Euclidean Green’s functions (92-95) are all reflection positive.

The first step to find the spinor parts of the Poincaré generators in the Euclidean representation is to use the
identities (88-91) which lead to∫ ∑

µν

ψ∗e(θx, µ)
eip·(x−y)

p2 +m2
Ds
µν [Op · σe]φe(y, ν)d4xd4yd4p =

∫ ∑
µν

ψ∗e(θx, µ)
eip·(x−y)

p2 +m2
Ds
µν [p ·AσeBt]φe(y, ν)d4xd4yd4p (106)

∫ ∑
µν

ψ∗ed(θx, µ)
eip·(x−y)

p2 +m2
Ds
µν [Op · σ2σeσ2]φed(y, ν)d4xd4yd4p =

∫ ∑
µν

ψ∗ed(θx, µ)
eip·(x−y)

p2 +m2
Ds
µν [p ·A∗σ2σeσ2B

†]φed(y, ν)d4xd4yd4p (107)

∫ ∑
µν

ψ∗e∗(θx, µ)
eip·(x−y)

p2 +m2
Ds
µν [Op · σte]φe∗(y, ν)d4xd4yd4p =

∫ ∑
µν

ψ∗e∗(θx, µ)
eip·(x−y)

p2 +m2
Ds
µν [p ·BσteAt]φe∗(y, ν)d4xd4yd4p (108)
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∫ ∑
µν

ψ∗ed∗(θx, µ)
eip·(x−y)

p2 +m2
Ds
µν [Op · σ2σ

t
eσ2]φed∗(y, ν)d4xd4yd4p =

∫ ∑
µν

ψ∗ed∗(θx, µ)
eip·(x−y)

p2 +m2
Ds
µν [p ·B∗σ2σ

t
eσ2A

†]φed∗(y, ν)d4xd4yd4p. (109)

The next step is to move the transformations from the kernels to the wave functions. The Euclidean invariance of
the measures and scalar products, the group representation properties of the Wigner functions, and re-definitions of
the wave functions can be used to show that (106-109) are equivalent to∫ ∑

(Ds
µα[A†]−1ψe(θOtθx, α))∗

eip·(θx−y)

p2 +m2
Ds
µν [p · σe]φe(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗e(x, µ)

eip·(θx−y)

p2 +m2
Dj
µα[p · σe]Ds

αν [Bt]φe(Oy, ν)d4xd4yd4p (110)

∫ ∑
(Ds

µα[At]−1ψed(θOtθx, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σ2σeσ2]φed(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗ed(x, µ)

eip·(θx−y)

p2 +m2
Dj
µα[p · σ2σeσ2]Ds

αν [B†]φed(Oy, ν)d4xd4yd4p (111)

∫ ∑
(Ds

µα[B†]−1ψe∗(θOtθx, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σte]φe∗(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗e∗(x, µ)

eip·(θx−y)

p2 +m2
Dj
µα[p · σte]Ds

αν [At]φ̃e∗(Oy, ν)d4xd4yd4p (112)

∫ ∑
(Ds

µα[Bt]−1ψed∗(θOtθx, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σ2σ

t
eσ2]φed∗(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗ed∗(x, µ)

eip·(θx−y)

p2 +m2
Ds
µα[p · σ2σ

t
eσ2]Ds

αν [A†]φed∗(Oy, ν)d4xd4yd4p. (113)

To derive expressions for the generators for each type of spinor, check the hermiticity and verify the commutation
relations the first step is to replace A and B with the pairs of SU(2) matrices representing one-parameter groups for
both ordinary rotations about a fixed axis and rotations in a Euclidean space time plane.

For ordinary rotations about the n̂ axis, the one-parameter group is

A(λ) = B∗(λ) = ei
λ
2 n̂·σσσ (114)

and (θOt(λ)θ) = Ot(λ), while for rotations in Euclidean n̂-x0 space-time planes the one-parameter group is

A(λ) = Bt(λ) = ei
λ
2 n̂·σσσ (115)

and (θOt(λ)θ) = O(λ). The 4× 4 orthogonal transformations, O(λ) associated with each type of transformation are
shown explicitly for rotations about the ẑ axis and for rotations in the ẑ-x0 plane: For rotations about the ẑ axis

O(A,A∗)(λ) =

 1 0 0 0
0 cos(λ) sin(λ) 0
0 − sin(λ) cos(λ) 0
0 0 0 1

 (116)
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and

ΘO(A,A∗)(λ)Θ = O(A,A∗)(λ). (117)

For rotations in the ẑ-x0 plane

O(A,At)(λ) =

 cos(λ) 0 0 sin(λ)
0 1 0 0
0 0 1 0

− sin(λ) 0 0 cos(λ)

 (118)

and

θOt(A,At)(λ)θ = O(A,At)(λ) (119)

For the case of ordinary rotations A = B∗ and equations (110-113) become∫ ∑
(Ds

µα[A]ψe(Ot(λ)x, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σe]φe(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗e(x, µ)

eip·(θx−y)

p2 +m2
Dj
µα[p · σe]Ds

αν [A†]φe(O(λ)y, ν)d4xd4yd4p (120)

∫ ∑
(Ds

µα[A∗]ψed(Ot(λ)x, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σ2σeσ2]φed(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗ed(x, µ)

eip·(θx−y)

p2 +m2
Dj
µα[p · σ2σeσ2]Ds

αν [At]φed(O(λ)y, ν)d4xd4yd4p (121)

∫ ∑
(Ds

µα[A∗]ψe∗(Ot(λ)x, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σte]φe∗(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗e∗(x, µ)

eip·(θx−y)

p2 +m2
Dj
µα[p · σte]Ds

αν [At]φe∗(O(λ)y, ν)d4xd4yd4p (122)

∫ ∑
(Ds

µα[A]ψed∗(Ot(λ)x, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σ2σ

t
eσ2]φed∗(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗ed∗(x, µ)

eip·(θx−y)

p2 +m2
Ds
µα[p · σ2σ

t
eσ2]Ds

αν [A†]φed∗(O(λ)y, ν)d4xd4yd4p (123)

For the case of rotations in Euclidean space-time planes for A = Bt equations (110-113) become∫ ∑
(Ds

µα[A]ψe(O(λ)x, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σe]φe(y, ν)d4xd4yd4p

=

∫ ∑
ψe
∗(x, µ)

eip·(θx−y)

p2 +m2
Dj
µα[p · σe]Ds

αν [A]φe(O(λ)y, ν)d4xd4yd4p (124)

∫ ∑
(Ds

µα[A∗]ψed(O(λ)x, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σ2σeσ2]φed(y, ν)d4xd4yd4p
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=

∫ ∑
ψ∗ed(x, µ)

eip·(θx−y)

p2 +m2
Dj
µα[p · σ2σeσ2]Ds

αν [A∗]φed(Oy, ν)d4xd4yd4p (125)

∫ ∑
(Ds

µα[At]ψe∗(O(λ)x, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σte]φe∗(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗e∗(x, µ)

eip·(θx−y)

p2 +m2
Dj
µα[p · σte]Ds

αν [At]φe∗(O(λ)y, ν)d4xd4yd4p (126)

∫ ∑
(Ds

µα[A†]ψed∗(O(λ)x, α))∗
eip·(θx−y)

p2 +m2
Ds
µν [p · σ2σ

t
eσ2]φed∗(y, ν)d4xd4yd4p

=

∫ ∑
ψ∗ed∗(x, µ)

eip·(θx−y)

p2 +m2
Ds
µα[p · σ2σ

t
eσ2]Ds

αν [A†]φed∗(O(λ)y, ν)d4xd4yd4p. (127)

Note that the transformations above represent inverse Lorentz transformations since

〈x, ν|U(Λ, 0)|ψ〉 = 〈ψ|U†(Λ, 0)|x, ν〉∗ = 〈Otx, ν|ψ〉∗ = 〈ψ|Otx, ν〉. (128)

To construct generator of ordinary rotations differentiate the right hand side of (120-123) by λ, set λ = 0, and
multiply the result by i. To construct the generators of Euclidean space-time rotations differentiate the right hand
side of (124-127) by λ, set λ = 0, and multiply the result by i to get expressions for the generators. To get expressions
for the Lorentz Boost generators multiply the Euclidean space-time rotation generators by an additional factor of −i.
The derivatives of the Wigner functions can be computed using

d

dλ
Ds
µν [A(λ)]|λ=0

=
d

dλ
〈s, µ|eiλn̂·S|s, ν〉|λ=0

= i〈s, µ|n̂ · S|s, ν〉 (129)

d

dλ
Ds
µν [A(λ)†]|λ=0

=
d

dλ
〈s, µ|e−iλn̂·S|s, ν〉|λ=0

= −i〈s, µ|n̂ · S|s, ν〉 (130)

d

dλ
Ds
µν [A∗(λ)]|λ=0

=
d

dλ
(Ds

µν [A(λ)])∗|λ=0
= −i〈s, µ|n̂ · S|s, ν〉∗ = −i〈s, ν|n̂ · S|s, µ〉 (131)

d

dλ
Ds
µν [At(λ)]|λ=0

=
d

dλ
(Ds

µν([A(λ)])∗)−1
|λ=0

= i〈s, µ|n̂ · S|s, ν〉∗ = i〈s, ν|n̂ · S|s, µ〉. (132)

These can be evaluated using Sz and angular momentum raising and lowering operators. The rotation generators for
each type of spinor representation can be read off of (120-123):

〈x, s, ν|J|ψe〉 =
∑
ν

(
δµνx× (−i ∂

∂x
) + 〈s, µ|n̂ · S|s, ν〉

)
〈x, s, ν|ψe〉 (133)

〈x, s, ν|J|ψed〉 =
∑
ν

(
δµνx× (−i ∂

∂x
)− 〈s, ν|n̂ · S|s, µ〉

)
〈x, s, ν|ψed〉 (134)

〈x, s, ν|J|ψe∗〉 =
∑
ν

(
δµνx× (−i ∂

∂x
)− 〈s, ν|n̂ · S|s, µ〉

)
〈x, s, ν|ψe∗〉 (135)

〈x, s, ν|J|ψed∗〉 =
∑
ν

(
δµνx× (−i ∂

∂x
) + 〈s, µ|n̂ · S|s, ν〉

)
〈x, s, ν|ψed∗〉 (136)
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The first and fourth term are representations of standard rotation generators . In the second and third terms the
spin generator matrix elements are transposed and multiplied by with a (-) sign. To show that these operator satisfy
SU(2) commutation relations, consider matrices satisfying SU(2) commutation relations:

[Mi,Mj ] = iεijkMk. (137)

The transposes satisfy

[M t
j ,M

t
i ] = iεijkM

t
k (138)

[(−M t
i ), (−M t

j )] = iεijk(−M t
k) (139)

which shows that the negative transpose of these matrices also satisfy SU(2) commutation relations. This shows that
all of the spin generator satisfy SU(2) commutation relations.

Generators for rotations in Euclidean space-time planes are constructed the same way from

〈x, s, ν|J0n̂|ψe〉 =
∑
ν

(
iδµν(x

∂

∂x0
− x0 ∂

∂x
)− 〈s, µ|n̂ · S|s, ν〉

)
〈x, s, ν|ψe〉 (140)

〈x, s, ν|J0n̂|ψed〉 =
∑
ν

(
iδµν(x

∂

∂x0
− x0 ∂

∂x
) + 〈s, ν|n̂ · S|s, µ〉

)
〈x, s, ν|ψed〉 (141)

〈x, s, ν|J0n̂|ψe∗〉 =
∑
ν

(
iδµν(x

∂

∂x0
− x0 ∂

∂x
)− 〈s, ν|n̂ · S|s, µ〉

)
〈x, s, ν|ψe∗〉 (142)

〈x, s, ν|J0n̂|ψed∗〉 =
∑
ν

(
iδµν(x

∂

∂x0
− x0 ∂

∂x
) + 〈s, µ|n̂ · S|s, ν〉

)
〈x, s, ν|ψed∗〉 (143)

In order to construct the boost generators it is necessary to multiply these expression by an additional factor of (-i)

〈x, s, ν|K|ψe〉 =
∑
ν

(
δµν(x

∂

∂x0
− x0 ∂

∂x
) + i〈s, µ|n̂ · S|s, ν〉

)
〈x, s, ν|ψe〉 (144)

〈x, s, ν|K|ψed〉 =
∑
ν

(
δµν(x

∂

∂x0
− x0 ∂

∂x
)− i〈s, ν|n̂ · S|s, µ〉

)
〈x, s, ν|ψed〉 (145)

〈x, s, ν|K|ψe∗〉 =
∑
ν

(
δµν(x

∂

∂x0
− x0 ∂

∂x
) + i〈s, ν|n̂ · S|s, µ〉

)
〈x, s, ν|ψe∗〉 (146)

〈x, s, ν|K|ψed∗〉 =
∑
ν

(
δµν(x

∂

∂x0
− x0 ∂

∂x
)− i〈s, µ|n̂ · S|s, ν〉

)
〈x, s, ν|ψed∗〉 (147)

The continuous part of these expressions agree with (74-75) for spinless operators. The relevant commutators involving
the spin parts of the boost generators in each of the four representations are

[Ki,Kj ] = [iSi, iSj ] = −iεijkSk (148)

[Ki,Kj ] = [−iSti ,−iStj ] = −εijk(−Stk) (149)

[Ki,Kj ] = [iSti , iS
t
j ] = −εijk(−Stk) (150)
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[Ki,Kj ] = [−iSi,−iSj ] = −iεijkSk (151)

[Ki, Sj ] = [iSi, Sj ] = εijkiSk = εijkKk (152)

[Ki, Sj ] = [−iSti ,−Stj ] = εijk − iStk = εijkKk (153)

[Ki, Sj ] = [iSti ,−Stj ] = εijkiS
t
k = εijkKk (154)

[Ki, Sj ] = [−iSi, Sj ] = −iεijk(−iSk) = εijkKk (155)

where the spin generators in (149,150,153) and (154) are (-) the transposes of the matrices satisfying SU(2) commuta-
tion relations, which were shown in (137-139) to satisfy SU(2) commutation relations. It follows that the expressions
(133-136) and (144-147) for the Lorentz generators in each of the spinor representations satisfy the Poincaré commu-
tation relations.

The hermiticity of these generators follow from the expressions (120-123) and (124-127). Each of equations (120-123)
has the form

〈U†(λ)ψ|φ〉 = 〈ψ|U(λ)|φ〉 (156)

so the rotation operators, which are generators of unitary one-parameter groups [25] are self-adjoint in the Hilbert
spaces with inner products (96-99).

For the boost generators hermiticity follows from (124-127). In this case all of these equations have the form

〈T (λ)ψ|φ〉 = 〈ψ|T (λ)|φ〉 (157)

In these cases T (λ) is Hermitian, but the generators are constructed by multiplying the λ derivative 1 = (i)(−i) rather
than i, resulting in Hermitian operators.

In these covariant representations the spin does not enter in the Hamiltonian or the linear momentum operators.
These operators all commute with the spin operators and commutators with these operators follow from the scalar
case.

The main result of this section the expressions (133-136) and (144-147) for the Poincaré generators. The construction
relates the Euclidean spinors to the Lorentz covariant spinors.

VI. SELF ADJOINTNESS

While the self-adjointness of the generators of ordinary rotations follows from the unitarity of the one-parameter
group of rotations on the Hilbert spaces (96-99), this argument does not apply to either the Hamiltonian or the boost
generators. In both cases the operators were derived from the corresponding Euclidean generators by multiplication
by an imaginary constant. The Euclidean generators and corresponding Lorentz generators act on different Hilbert
space representations. The problem is that the corresponding finite Euclidean transformations can map functions
with positive time support to functions that violate this condition.

For the Hamiltonian this can be treated by only considering translations in the positive Euclidean time direction.
These translations map functions with positive Euclidean time support into functions with positive Euclidean time
support. Reflection positivity can be used to show that translations in the positive Euclidean time direction define a
contractive Hermitian semigroup on the Hilbert space with the scalar products (54-57). The argument [26] uses the
Schwartz inequality on both the physical and Euclidean Hilbert spaces. One application of the Schwartz inequality
on the physical Hilbert space gives

‖|e−Hx
0

|φ〉‖ = 〈e−Hx
0

φ|e−Hx
0

|φ〉1/2 = 〈φ|e−H2x0

|φ〉1/2 ≤ ‖|e−H2x0

|φ〉‖1/2‖|φ〉‖1/2. (158)

Repeating these steps n-times gives

‖|e−Hx
0

|φ〉‖ ≤ ‖|e−H2nx0

|φ〉‖1/2
n

‖|φ〉‖1−1/2n . (159)

The quantity

‖|e−H2nx0

|φ〉‖ ≤ ‖θUe(2nx0)|ψ〉‖e < ‖|ψ〉‖e <∞ (160)
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is bounded by the Euclidean norm, ‖ · ‖e, since Ue(2
nx0) is unitary and ‖θ‖e = 1 on that Hilbert space. Since this is

finite and independent of n, taking the limit as n→∞ gives

‖|e−Hx
0

|φ〉‖ ≤ ‖|φ〉‖. (161)

It follows that positive Euclidean time translations define a contractive Hermitian semigroup on the Hilbert spaces
(96-99). The generator is a positive self-adjoint operator [25][27].

Boosts present additional complications. Even an infinitesimal rotation in a Euclidean space time plane will map
a general function with positive Euclidean time support to one that violates this condition. The self-adjointness of
the boost generator cannot be demonstrated by showing that it defines a unitary one-parameter group or contractive
semigroup, however it turns out that rotations in Euclidean space time planes, which are interpreted as boosts with
complex rapidity, define local symmetric semigroups [28][29] [30] on the Hilbert spaces (96-99). These have self-adjoint
generators, which are exactly the boost generators.

The conditions for a local symmetric semigroup [28] are

1. For each θ ∈ [0, θ0], there is a linear subset Dθ such that Dθ1 ⊃ Dθ2 if θ1 < θ2, and ∪0<θ<θ0Dθ2 is dense.

2. For each θ ∈ [0, θ0], E(θ) is a linear operator on the Hilbert space with domain Dθ

3. E(0) = I, E(θ1) : Dθ2 → Dθ2−θ1 , and E(θ1)E(θ2) = E(θ1 + θ2) on Dθ1+θ2 for θ1, θ2, θ1 + θ2 ∈ [0, θ0]

4. E(θ) is Hermitian for θ ∈ [0, θ0]

5. E(θ) is weakly continuous on [0, θ0]

When these conditions are satisfied there is a unique self-adjoint operator K such that Dθ ⊂ De−Kθ and E(θ) is
the restriction of e−Kθ to Dθ.

In this case E(θ) represents Euclidean space time rotations considered as operators on the Hilbert space (4) restricted
to domains that will be described below.

The domains are Schwartz functions with space Euclidean time support the wedge shaped region defined by

x · n̂− x0
e

ε
+ ε < 0 (162)

x · n̂ +
x0
e

ε
− ε > 0 (163)

The wedge shaped region becomes the positive Euclidean time half plane in the limit that ε → 0. Schwartz
functions with support on this half plane are dense. In addition, if this domain is rotated by an angle less than
θε := ± tan−1(ε), it will still be contained in the positive Euclidean time half plane. Schwartz functions with support
in these wedge shaped regions can be constructed from Schwartz functions that have support or positive Euclidean
time by multiplying the function by g(x0,x · n̂, ε) where

g(x0,x · n̂, ε)) = h(
x0
e

ε
− ε+ x · n̂)h(

x0
e

ε
− ε− x · n̂). (164)

and

h(λ) =

{
e
− 1

(λ)2 λ > 0
0 λ ≤ 0

. (165)

is a smoothed Heaviside function. g(x0,x · n̂, ε)) is a Schwartz function with support in the wedge shaped region
(162-163) that approaches 1 as ε(θ) approaches 0.

The domain Dθ is taken as the space of Schwartz functions with positive time support multiplied by the function
g(x0,x · n̂, ε)) where θ = θε. The Euclidean space time rotations restricted to these domains have all of the properties
of local symmetric semigroup. It follows that the boost generators K are self-adjoint on the physical Hilbert space.
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VII. FINITE TRANSFORMATIONS

Finite Poincaré transformations are needed for most applications. While the generators for space translations
and rotations were constructed from the associated unitary one-parameter groups, the construction of the boost
generators and Hamiltonian was not as direct. Because self adjointness was established for the Hamiltonian and
boost generators, each one of these generators has a dense set of analytic vectors [31] where exponential series for
the unitary one parameter groups converge. This ensures that the differential operators (75) that define the boost
generators applied to a dense set of functions with positive time support have positive time support.

Directly summing the exponential series is inefficient. On the other hand, the structure of the finite unitary
transformations is fixed by (43) when they act on irreducible basis states. The situation is analogous to non-relativistic
quantum mechanics - time evolution becomes trivial once the Hamiltonian is diagonalized. In the Euclidean framework,
the analogous problem is to diagonalize the mass squared operator. This is a dynamical problem that depends on the
choice of reflection positive Euclidean covariant distributions. For the Green functions discussed in sections 4-5 the
mass operator is the four dimensional Euclidean Laplacian. For more general Euclidean covariant Green’s functions
is it second order differential operator. The spectral condition ensures that there are no negative energy states.

The Euclidean Green’s functions are manifestly covariant with respect to space translations and rotations. Given a
mass eigenstate, the translational and rotational covariance can be used to decompose the mass eigenstate into a linear
superposition of simultaneous eigenstates of linear momentum, and spins. On these states the unitary representation
of the Poincaré group acts irreducibly.

In the Euclidean formalism, since the dynamics is in the Green function, mass eigenstates are solutions to

〈φ|(M2 −m2)|ψ〉 = 0 (166)

for all φ satisfying the support condition. Methods for constructing mass eigenstates satisfying the support condition
are discussed in [32].

Mass-momentum eigenstates can be constructed using

|m,p〉 :=

∫
e−ip·aU(a)|ψ〉da. (167)

Applying the translation operator U(a′) to this vector gives

U(a′)|m,p〉 = U(a′)

∫
e−ip·aU(a)|ψ〉da =

∫
e−ip·aU(a + a′)|ψ〉da =

∫
e−ip·(a

′′−a′)U(a′′)|ψ〉da′′ = eip·a
′
∫
e−ip·a

′′
U(a′′)|ψ〉da′′ = eip·a

′
|m,p〉 (168)

which shows that (167) is either 0 or an eigenstate of linear momentum with eigenvalue p.
The mass-momentum eigenstates can be decomposed into spin eigenstates. Right and left handed kernels with the

covariance properties (96) or (99) after integration become kernels for the covariant representations (60) and (61).
For Green’s functions with these rotational covariance properties the covariant basis states, up to normalization, can
be constructed as follows,

|(m, s)p, µ〉 :=

∫
U(R)|m,R−1p〉Ds∗

µ0[R]dR (169)

where the integral is over the SU(2) Haar measure. For a fixed rotation R′:

U(R′)|(m, s)R′−1p, µ〉 = U(R′)

∫
U(R)|m,R−1R′−1p〉Ds∗

µ0[R]dR =

∫
U(R′R)|m, (R′R)−1p〉Ds∗

µ0[R]dR =

∫
U(R′′)|m,R′′−1p〉Ds∗

µν [R
′−1]Ds∗

ν0[R′′]dR′′ =

∫
U(R′′)|m,R′′−1R′p〉Ds∗

ν0[R′′]dR′′Ds
νµ[R′] = |(m, s)p, ν〉Ds

νµ[R′].

(170)
If R′ is a rotation about the z axis, it follows that the resulting vector is an eigenstate of s2 and sz. This shows how
mass eigenstates can be decomposed into a superposition of Lorentz covariant states that transform irreducibly with
respect to the Poincaré group.
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VIII. SUMMARY AND CONCLUSION

The purpose of this paper is to provide explicit representations for Poincaré generators for systems of particles of
any spin in Euclidean representations of relativistic quantum mechanics, demonstrate that these generators satisfy
the commutation relations of the Poincaré Lie Algebra and are self-adjoint with respect to a reflection positive scalar
product. This was done by starting with irreducible unitary representations of the Poincaré group and expressing
them in a manifestly Lorentz covariant form. The inner product in the Lorentz covariant representation necessarily
had a non-trivial kernel, which could be expressed in terms of reflection positive Green functions. Expressions for the
generators for any spin were derived based on these relations.

While the results are specifically for positive mass irreducible representations, they apply more generally since any
unitary representation of the Poincaré group can be decomposed into a direct integral of positive-mass positive-energy
irreducible representations.

Two consequences of the Osterwalder-Schrader reconstruction theorem are (1) the locality axiom is logically inde-
pendent of the other Euclidean axioms and (2) the Hilbert space representation of the quantum theory does not require
explicit analytic continuation. These observations suggest the possibility of formulating phenomenological non-local
relativistic quantum mechanical models in a purely Euclidean representation [33][34][32]. The new feature is that the
dynamics appears in model Euclidean Green’s functions rather than in the Hamiltonian, which is a simple differential
operator. One of the advantages of the Euclidean formulation is that Euclidean Green’s functions are moments of a
Euclidean path integral, which provides a formal connection to the dynamics of Lagrangian field theories. Models can
be formulated by perturbing products of free Green Euclidean functions with Euclidean covariant interactions that
preserve reflection positivity.

The authors would like to acknowledge Palle Jørgensen for helpful discussions on reflection positivity.
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