29:006 -EXERCISES ON SIMPLE HARMONIC MOTION

Formulas

- Kinetic Energy KE $=1 / 2 \mathrm{mv}^{2}$
- gravitational potential energy GPE = mgh
- frequency $f=1 / T$, where T is the period of oscillation
- Period of a mass-spring oscillator: $T=2 \pi \sqrt{\frac{m}{k}}$
- period of a pendulum: $T=2 \pi \sqrt{\frac{L}{g}}$

Exercises

1. A 10 kg mass is attached to a rope that is 100 m long to form a huge pendulum. The mass is pulled aside so that it is 5 meters above its resting point.
(a) How much potential energy (PE) does it have when it is 5 m above its resting point?
(b) When the pendulum is released how much kinetic energy (KE) will it have when it passes through its lowest point? Hint: energy is conserved.

(c) How fast will it be moving when it passes through its lowest point?
(d) If it takes 2 seconds for the pendulum to reach its lowest point after it is released, when will it return to its initial position? What is this time called?
2. The period, T of a harmonic oscillator is 4 seconds. What is its frequency f ?
3. The frequency, f of a harmonic oscillator is 0.1 Hz . What is its period of oscillation?
4. What force is needed to keep a spring stretched by 10 cm if the spring constant is $20 \mathrm{~N} / \mathrm{m}$?
5. When cart of mass m is connected to a hoop spring of spring constant k on the air track, the cart undergoes simple harmonic motion with a period of 5 seconds. The experiment is repeated with a different cart of mass M and it is found that the period is 10 seconds. What is the relationship between m and M ?
6. A huge pendulum is made by hanging a 100 kg mass at the end of a rope that is 40 m long.
(a) What is the period of this pendulum?
(b) How many complete cycles will this pendulum execute in one minute?

Solutions

1. (a) $P E=m \mathrm{gh}=10 \mathrm{~kg} \cdot 10 \mathrm{~m} / \mathrm{s}^{2} \cdot 5 \mathrm{~m}=500 \mathrm{~J}$
(b) all of the PE is converted to KE at the bottom, so $\mathrm{KE}=\mathrm{PE}=500 \mathrm{~J}$
(c) $\mathrm{KE}=1 / 2 \mathrm{~m} \mathrm{v}^{2} \rightarrow \mathrm{v}=\sqrt{\frac{2 \cdot K E}{m}}=\sqrt{\frac{2 \cdot 500 \mathrm{~J}}{10 k g}}=\sqrt{\frac{1000}{10}}=\sqrt{100}=10 \mathrm{~m} / \mathrm{s}$
(d) It takes 2 seconds to get to the bottom, another 2 seconds to rise to its highest point on the left side, 2 seconds to get back down to the bottom and another 2 seconds to get back to its starting point, so the total is $2+2+2+2=8$ seconds. This time is called the period, T of oscillation.
2. $f=\frac{1}{T}=\frac{1}{4 s}=\frac{1}{4} \mathrm{~Hz}=0.25 \mathrm{~Hz}$
3. $T=\frac{1}{f}=\frac{1}{0.1 H z}=\frac{1}{\frac{1}{10} \mathrm{~Hz}}=10 \mathrm{~s}$
4. Magnitude of force, $F=k(N / m) \cdot x($ amount of stretch in $m)=20 \mathrm{~N} / \mathrm{m} \cdot 0.10 \mathrm{~m}=2 \mathrm{~N}$.
5. $T=2 \pi \sqrt{\frac{m}{k}} \rightarrow$ to double T, the mass must increase by a factor of 4 , since $\sqrt{4}=2$.

Therefore $\mathrm{M}=4 \cdot \mathrm{~m}$.
6. (a) $T=2 \pi \sqrt{\frac{L}{g}}=2 \pi \sqrt{\frac{40 \mathrm{~m}}{10 \mathrm{~m} / \mathrm{s}^{2}}}=2 \pi \sqrt{4}=4 \pi=12.6 \mathrm{~s}$
(b) $\mathrm{f}=1 / \mathrm{T}=0.079 \mathrm{~Hz}$ or 0.079 cycles per second, thus in one minute (60 s) this pendulum will execute 0.079 cycles $/ \mathrm{s} \times 60 \mathrm{~s}=4.76$ cycles, or 4 complete cycles

