29:006 EXAM 1 FORMULAS

1 km - 1000 m $1 m - 1$	100 cm 1 mm -	0.001 m 1 kg	n = 1000 a
1 km = 1000 m $1 m = 100 cm$ $1 mm = 0.001 m$ $1 kg = 1000 g$			
acceleration due to gravity on earth $= g = 10 \text{ m/s}^2$			
weight (w) = mass (m) \times g , w = m \times g			
Net force (F_{Net}) = mass (m) × acceleration (a), F_{Net} = m × a			
avg velocity = $\frac{\text{distance}}{\text{time}}$	l = v t for a = 0	acceleration = $\frac{\text{vel}}{2}$	ocity change time
Distance an object falls from rest in time t: $d = \frac{1}{2} \times g \times t^2$			
Speed an object acquires after falling from rest for a time t: $v = g \times t$			
time (t) to travel a distance (d) at an acceleration a: $t = \sqrt{\frac{2d}{a}}$			
present velocity (v) = initial velocity (v ₀) + acceleration (a) × time (t) v = v ₀ + a × t			
time (t) for a ball thrown up with initial velocity v_0 to reach its highest point:			
t = initial velocity / g, $t = \frac{v_0}{g}$			
Maximum height (h) an object reaches if thrown vertically up with velocity v_0 :			
$h = \frac{v_0^2}{2g}$			
initial velocity v_0 that an object thrown vertically up requires to reach a height h:			
$\mathbf{v}_{0} = \sqrt{2 \times g \times h}$			
time (t) for an object starting from rest to fall a distance h: $t = \sqrt{\frac{2h}{g}}$			
momentum = mass × velocity = m (kg) × v (m/s), $p = m \times v$			
Work (W in Joules) = Force (F in N) × distance (d in m) = $F \times d$			
Kinetic Energy (J) = $\frac{1}{2}$ m v ²			
Gravitational Potential Energy (Joules) = m (kg) \times g (m/s ²) \times height (m) GPE = m g h = w h			
Centripetal acceleration	Centripetal force	Torque (N m)	
$a_{cent} = \frac{(velocity)^2}{radius} = \frac{v^2}{r}$	$F_c = m a_{cent}$	= Force (N) x lev	er arm (m)