29:006 Fall 2009 Final Exam Formulas

1 meter $=100 \mathrm{~cm}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{~kW}=1000 \mathrm{~W}$
$1 \mathrm{~mm}=0.001 \mathrm{~m}$	$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$	$1 \mathrm{MHz}=10^{6} \mathrm{~Hz}$
Speed of light in vacuum, $\mathrm{C}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$		
acceleration due to gravity on the earth $=\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$		
Ohm's Law: voltage $=$ current \times resistance ($V=I \times R$)		
current $\mathrm{I}=\mathrm{V} / \mathrm{R}$		stance $\mathrm{R}=\mathrm{V} / \mathrm{I}$
$\begin{gathered} \text { power }(\mathrm{W})=\text { Energy/time }=\mathrm{E} / \mathrm{t}, \quad 1 \text { Watt }(\mathrm{W})=1 \mathrm{~J} / \mathrm{s} \\ \text { Energy }=\text { Power } \times \text { time }=\mathrm{Pt} \end{gathered}$		
$\begin{gathered} \text { power (Watts) }=\text { current }(\mathrm{A}) \times \text { voltage }(\mathrm{V}) \\ \qquad P=I V=I^{2} R=\frac{V^{2}}{R} \end{gathered}$		
$\begin{gathered} \text { wave speed }(v)=\text { wavelength }(\lambda) \times \text { frequency }(f) \\ \qquad v=\lambda f \end{gathered}$		
frequency (f)	$\frac{1}{\operatorname{eriod}(T)}$	wavelength $\quad \lambda=\frac{c}{f}$
photon energy $E: E=h f=\frac{h c}{\lambda}$, where $h=$ constant		
frequency $f=\frac{\text { speed }}{\text { wa }}$	light ${ }_{\text {gth }}=\frac{c}{\lambda}$	$\begin{gathered} v_{\text {medium }}=\frac{c}{n} \\ n=\text { index of } \\ \text { refraction } \end{gathered}$
${ }_{Z}^{A} X, \quad \mathrm{~A}=\mathrm{Z}+\mathrm{N}, \mathrm{Z}=\# \text { protons, } \mathrm{N}=\# \text { neutrons }$		

