20:006 EXAM 2 FORMULAS

weight (w) $=$ mass $(\mathrm{m}) \times \mathrm{g}$,	$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$		$\mathrm{m}=100 \mathrm{~cm}$
atmospheric pressure $=100,000 \mathrm{~Pa}$		$1 \mathrm{~kg}=1000$ grams	
$\operatorname{Pressure}(P)=\frac{\operatorname{force}(F)}{\operatorname{area}(A)}=\frac{F}{A}$	$\begin{aligned} & \text { Force = Pressure } \times \text { Area } \\ & \text { density = mass / volume } \end{aligned}$		$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
$\begin{aligned} \hline \text { Buoyant force } & =\text { weight of displaced water } \\ & =\text { volume of object submerged in liters } \times 10 \mathrm{~N} / \text { liter } \end{aligned}$			
weight of 1 liter of water $=10 \mathrm{~N}$	\| GPE = mgh		$\mathrm{KE}=1 / 2 \mathrm{mv}{ }^{2}$
heat $(Q)=$ mass $(\mathrm{m}) \times$ specific heat (c) \times temperature change in C			
$\mathrm{T}(\mathrm{C})=(5 / 9) \times[\mathrm{T}(\mathrm{F})-32]$	$\mathrm{T}(\mathrm{F})=(9 / 5) \mathrm{T}(\mathrm{C})+32 \mathrm{~T}(\mathrm{~K})=\mathrm{T}(\mathrm{C})+273$		
$\begin{aligned} & \text { Change in internal energy of a system } \\ & =\text { heat absorbed by system - work done by system } \\ & \qquad \Delta(I E)=Q_{i n}-W_{\text {out }} \end{aligned}$			
Heat into Engine $=$ Work done by engine + Heat discarded by engine$Q_{\text {in }}=W_{\text {out }}+Q_{\text {out }}$			
$\text { eff (Engine efficiency) }=\frac{\text { work done by engine }}{\text { heat into the engine }}=\frac{W_{\text {out }}}{Q_{i n}}$			
$\text { frequency }(f)=\frac{1}{\text { period }(T)} \quad \operatorname{period}(T)=\frac{1}{\text { frequency }(f)}$			
spring force $(N)=$ spring constant $k(N / m) \times$ stretch or compression in m			
Period (T) of a mass/spring system $\quad T=2 \pi \sqrt{\frac{m}{k}}$			
"golden rule" $\quad \mathrm{V}_{\text {wave }}=\lambda f$	Peri	endulu	m $\quad T=2 \pi \sqrt{\frac{L}{g}}$
Rotational momentum = rotational inertia \times rotational speed			

