Aristotle

- 350 BC
- Was the final word on any scientific question
- Influenced scientific thought until the end of the $17^{\text {th }}$ century
- Believed that the natural state of objects was to
 be at rest

Galileo, continued

- Previous thinking accepted for 15 centuries, held that the earth was the center of the universe (Ptolemaic theory)
- Invented the first useful telescope in 1609.
- First experimental studies of the laws of motion
- 350 years after his death, Pope John Paul II declared that the Church was in error in Galileo's case.

Tycho Brahe(1546-1601) \& Johannes Kelper (1571-1630)

- Brahe compiled the first detailed observational data on planetary motion (without a telescope!)
- Kepler analyzed Brahe's data and discovered important regularities in the motion of the planets which supported the Heliocentric theory.
- These regularities are known as Kepler's Laws of planetary motion

Newton

- Born Jan 4, 1642
- Published Principia in 1687, considered the greatest scientific book ever written
- 3 Laws of mechanics (following on Galileo)
- Law of gravity (Following Kepler)
- Invented calculus

Newton, continued

- Showed that the same laws that govern the fall of objects on earth also govern the motion of the planets.
- "If I have seen further than others it is by standing on the shoulders of giants."

Einstein

- Born: 14 March 1879 in Germany
- Showed in 1905 that Newton's laws were not valid for objects moving with speeds near the speed of light \rightarrow 186,000 miles/sec.
- Developed the special
 theory of relativity $\mathrm{E}=$ mc^{2}

Quantum Mechanics

- At the end of the $18^{\text {th }}$ century and beginning of the $19^{\text {th }}$ century it became clear that Newton's laws of mechanics failed to explain behavior at the atomic level
- A new theory - Quantum Mechanics was developed by Max Planck, Neils Bohr, Albert Einstein, Werner Heisenberg, Erwin Schroedinger, P. Dirac, M. Born.

Why does something move?

Because nothing stops it!

The laws of motion Why things move

- Galileo's principle of inertia (Newton's $\underline{1}^{\text {st }}$ law
- Newton's $\underline{2}^{\text {nd }}$ law - law of dynamics

$$
\rightarrow \mathrm{F}=\mathrm{ma}
$$

- Newton's $3^{\text {rd }}$ law - "for every action there is an equal and opposite reaction"

Inertia examples

- Pull the tablecloth out from under the dishes
- Knock the card out from under the marble
- Shake the water off of your hands
- The car on the air rack keeps going
- Homer not wearing his seatbelt \&

Galileo's principle of Inertia

- A body at rest tends to remain at rest
- A body in motion tends to remain in motion

Or stated in another way:

- You do not have to keep pushing on an object to keep it moving
- If you give an object a push, and if nothing tries to stop it, (like friction) it will keep going

What is inertia?

- All objects have it
- It is the tendency to resist changes in velocity
- if something is at rest, it stays at rest
- if something is moving, it keeps moving
- Mass is a measure of the inertia of a body, in units of kilograms (kg)
- Mass is NOT the same as weight!

Bart is on the moving train and then jumps straight up on the moving train
will he land:

1) on the ground, or
2) on the train?

Bart maintains his forward motion even as he jumps up. He lands on the train.

Refined Law of Inertia

- No force (push or pull) is needed to keep an object moving with constant velocity
- Constant velocity- moving in a straight line with constant speed

No stopping and no turning

Other examples

- Having a catch on a plane, bus or train
- Throwing a ball up and down while walking
- Dribbling a basketball while running

Concepts: speed and velocity

Speed: How fast am I going? measured in miles per hour (mph) feet per second (ft/s), etc.
speed $=\frac{\text { distance }}{\text { time }}=$ distance \div time

Velocity is a vector quantity

- Velocity conveys information both about the speed (magnitude) and direction, not only how fast, but also in what direction
- It is what we call a vector quantity - one having both magnitude and direction
- Formula to calculate the magnitude

$$
\mathrm{v}=\frac{d}{t}=d \div t
$$

Two objects starting at different places

- The speed in case A and B are both 1 m / s
- In case A, the object starts at position 0 m
- In case B, the object starts at position 2 m

Problem for today

- At an average speed of $5 \mathrm{ft} / \mathrm{s}$ how long would it take to walk around the world? (How would you measure your average walking speed?)
- The diameter of the earth is about 7800 miles
- The circumference is the diameter $\times \mathrm{pi}(\pi=$ 3.14)

Circum $=$ diam $\times 3.14=24,500$ miles

- In feet, this is Circum $=24,500$ miles $\times 5280$ miles per foot $=129,360,000$ feet

Position vs. time plots

- Case A: speed is $10 \mathrm{~m} / 10 \mathrm{~s}=10 \mathrm{~m} / \mathrm{s}$
- Case B: speed is $20 \mathrm{~m} / 10 \mathrm{~s}=2 \mathrm{~m} / \mathrm{s}$
- Case C: speed is $5 \mathrm{~m} / 10 \mathrm{~s}=0.5 \mathrm{~m} / \mathrm{s}$

- from $t=0$ to $t=1 \mathrm{~s}$ the object moves at a velocity of $3 \mathrm{~m} / 1 \mathrm{~s}=3 \mathrm{~m} / \mathrm{s}$
- from $t=1 \mathrm{~s}$ to $\mathrm{t}=\mathbf{3 \mathrm { s }}$, the object is not moving, so $\mathrm{v}=0 \mathrm{~m} / \mathrm{s}$
- from $t=3 \mathrm{~s}$ to $\mathrm{t}=\mathbf{6} \mathrm{s}$ the object moves at $\mathbf{3 \mathrm { m } / 3 \mathrm { s } = 1 \mathrm { m } / \mathrm { s } .}$

Problem, continued

- Velocity $(v)=d / t \rightarrow$ time $t=d / v(d \div v)$
- time $=129,360,000$ feet $/ 5 \mathrm{ft} / \mathrm{s}$

$$
=25,872,000 \mathrm{sec}
$$

- Divide by 60 to give time in minutes, time $=431,200$ minutes
- Divide by 60 again to get t in hours $t=7,187$ hours, divide by 24 to get days
- time = 299 days - almost 1 year!

We need a better way to deal with big numbers

