29:194 Homework \#5

Due at the beginning of class, Thursday, September 30, 2010.

1. Show that for an electric field of the form

$$
\mathbf{E}(\mathbf{x}, \tau, t)=\mathbf{E}_{0}(\mathbf{x}, \tau) \cos (\omega t-\mathbf{k} \cdot \mathbf{x})
$$

the magnetic field is given by

$$
\mathbf{B}(\mathbf{x}, \tau, t)=-\frac{1}{\omega}\left\{\left[\nabla \times \mathbf{E}_{0}(\mathbf{x}, \tau)\right] \sin (\omega t-\mathbf{k} \cdot \mathbf{x})-\left[\mathbf{k} \times \mathbf{E}_{0}(\mathbf{x}, \tau)\right] \cos (\omega t-\mathbf{k} \cdot \mathbf{x})\right\}
$$

2. A mirror machine has a mirror ratio $R_{m}=2$. A group of electrons with an isotropic velocity distribution (Maxwellian) is released at the center of the machine. In the absence of collisions, what fraction of these electrons is confined?
3. A singly ionized, 20 eV Argon plasma is confined in a magnetic cusp field such that throughout the volume of the plasma, except for the edges, the magnetic field is zero. The plasma diameter is 1.0 m , and its density is $n=10^{11} \mathrm{~m}^{-3}$. A small, 0.5 cm diameter spherical probe is placed at the center of the plasma and set to a potential of 100 V above the wall potential. At what distance from the probe surface will the measured potential be 1 V ?
4. An electron of charge $q_{e}=-e$ and mass m_{e} and an proton of charge $q_{e}=e$ and mass $m_{i}=m_{p}$ are initially at rest at $\mathbf{x}=(0,0,0)$ in a magnetic field $\mathbf{B}=B_{0} \hat{\mathbf{z}}$. An electric field is then turned on at $t=0$ and increased linearly until time $t_{1}=\frac{20 \pi m_{i}}{e B_{0}}$, at which point the electric field is held constant,

$$
\mathbf{E}(t)=\left\{\begin{array}{cc}
0 & t<0 \\
E_{0}\left(t / t_{1}\right) \hat{\mathbf{y}} & 0 \leq t \leq t_{1} \\
E_{0} \hat{\mathbf{y}} & t>t_{1}
\end{array}\right.
$$

Find the total current density as a function of time $\mathbf{j}(t)$ due to the drifts of the two particles (neglect the current due to the fast Larmor oscillation).

5. NUMERICAL: Polarization Drift

Use the same Matlab m-files lorentz.m, magnetic.m, electric.m, euler1.m, leapfrog2.m, and spm.m as used in HW\#4 and the adaptive RK45 method with a specified tolerance RelTol=1.10×10 ${ }^{-5}$. Specify $\mathbf{B}=(0,0,1)$, $q_{i} / m_{i}=1, q_{e}=-q_{i}$ and an artificial mass ratio $m_{i} / m_{e}=10$. Specify an electric field that increases with time $\mathbf{E}(t)=E_{0} t / t_{f} \hat{\mathbf{y}}$ with $E_{0}=0.5$ and t_{f} equal to 10 ion cyclotron periods. NOTE: The hold on command can be used to plot a second trace on the same plot; hold off turns this off.
(a) Plot the trajectories over $t=\left[0, t_{f}\right]$, on the same plot, of both the ion and electron each with an initial position $\mathbf{x}_{0}=(0,0,0)$ and initial velocity $\mathbf{v}_{0}=(-1,0,0)$.
(b) Why do we not use a realistic mass ratio (for protons) of $m_{i} / m_{e}=1836$ to do this calculation? HINT: Try using $m_{i} / m_{e}=40$.
6. Laser Trapping: A charged particle can be trapped by a spatially varying intense laser field. Using intereference of several lasers, the electric field near a charged particle is given by

$$
\mathbf{E}(\mathbf{x}, t)=E_{0}\left[1+\left(x / x_{0}\right)^{2}\right] \sin \left(\omega t-k_{y} y\right) \hat{\mathbf{x}} .
$$

Calculate the velocity of the oscillation center U as a function of position x for a particle initially at rest at $t=0$ at position $\mathbf{x}=\left(x_{0}, 0,0\right)$. You may assume that the particle velocity v and laser frequency ω satisfy $v \ll \omega / k_{y}$ and $v / x_{0} \ll \omega$.
7. NUMERICAL: Ponderomotive Force

Use the adaptive RK45 method with a specified tolerance RelTol=1.0×10 ${ }^{-5}$. Plot the x position of the particle vs. time t over a time $t=[0,50]$ for the problem above using $E_{0}=2, x_{0}=1, \omega=10, k_{y}=0.01$, and $q / m=1$.

