29:194 Homework #5

Due at the beginning of class, Thursday, September 30, 2010.

1. Show that for an electric field of the form

$$\mathbf{E}(\mathbf{x}, \tau, t) = \mathbf{E}_0(\mathbf{x}, \tau) \cos(\omega t - \mathbf{k} \cdot \mathbf{x})$$

the magnetic field is given by

$$\mathbf{B}(\mathbf{x}, \tau, t) = -\frac{1}{\omega} \left\{ \left[\nabla \times \mathbf{E}_0(\mathbf{x}, \tau) \right] \sin(\omega t - \mathbf{k} \cdot \mathbf{x}) - \left[\mathbf{k} \times \mathbf{E}_0(\mathbf{x}, \tau) \right] \cos(\omega t - \mathbf{k} \cdot \mathbf{x}) \right\}$$

- 2. A mirror machine has a mirror ratio $R_m = 2$. A group of electrons with an isotropic velocity distribution (Maxwellian) is released at the center of the machine. In the absence of collisions, what fraction of these electrons is confined?
- 3. A singly ionized, 20 eV Argon plasma is confined in a magnetic cusp field such that throughout the volume of the plasma, except for the edges, the magnetic field is zero. The plasma diameter is 1.0 m, and its density is $n = 10^{11}$ m⁻³. A small, 0.5 cm diameter spherical probe is placed at the center of the plasma and set to a potential of 100 V above the wall potential. At what distance from the probe surface will the measured potential be 1 V?
- 4. An electron of charge $q_e = -e$ and mass m_e and an proton of charge $q_e = e$ and mass $m_i = m_p$ are initially at rest at $\mathbf{x} = (0, 0, 0)$ in a magnetic field $\mathbf{B} = B_0 \hat{\mathbf{z}}$. An electric field is then turned on at t = 0 and increased linearly until time $t_1 = \frac{20\pi m_i}{eB_0}$, at which point the electric field is held constant,

$$\mathbf{E}(t) = \begin{cases} 0 & t < 0 \\ E_0(t/t_1)\hat{\mathbf{y}} & 0 \le t \le t_1 \\ E_0\hat{\mathbf{y}} & t > t_1 \end{cases}$$

Find the total current density as a function of time $\mathbf{j}(t)$ due to the drifts of the two particles (neglect the current due to the fast Larmor oscillation).

5. NUMERICAL: Polarization Drift

Use the same Matlab m-files lorentz.m, magnetic.m, electric.m, euler1.m, leapfrog2.m, and spm.m as used in HW#4 and the adaptive RK45 method with a specified tolerance RelTol= 1.10×10^{-5} . Specify $\mathbf{B} = (0,0,1)$, $q_i/m_i = 1$, $q_e = -q_i$ and an artificial mass ratio $m_i/m_e = 10$. Specify an electric field that increases with time $\mathbf{E}(t) = E_0 t/t_f \hat{\mathbf{y}}$ with $E_0 = 0.5$ and t_f equal to 10 ion cyclotron periods. NOTE: The hold on command can be used to plot a second trace on the same plot; hold off turns this off.

- (a) Plot the trajectories over $t = [0, t_f]$, on the same plot, of both the ion and electron each with an initial position $\mathbf{x}_0 = (0, 0, 0)$ and initial velocity $\mathbf{v}_0 = (-1, 0, 0)$.
- (b) Why do we not use a realistic mass ratio (for protons) of $m_i/m_e = 1836$ to do this calculation? HINT: Try using $m_i/m_e = 40$.

6. Laser Trapping: A charged particle can be trapped by a spatially varying intense laser field. Using intereference of several lasers, the electric field near a charged particle is given by

$$\mathbf{E}(\mathbf{x},t) = E_0[1 + (x/x_0)^2]\sin(\omega t - k_y y)\hat{\mathbf{x}}.$$

Calculate the velocity of the oscillation center U as a function of position x for a particle initially at rest at t=0 at position $\mathbf{x}=(x_0,0,0)$. You may assume that the particle velocity v and laser frequency ω satisfy $v\ll\omega/k_y$ and $v/x_0\ll\omega$.

7. NUMERICAL: Ponderomotive Force

Use the adaptive RK45 method with a specified tolerance RelTol= 1.0×10^{-5} . Plot the x position of the particle vs. time t over a time t = [0, 50] for the problem above using $E_0 = 2$, $x_0 = 1$, $\omega = 10$, $k_y = 0.01$, and q/m = 1.