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The anyon mean-field approximation (MFA) is tested by computing the band structure of a charged
particle in an infinite two-dimensional square lattice of infinitesimal flux tubes. The band structure and
density of states are compared with the MFA and found to be in agreement for ®=1/n, with n > 3. For
®=1/2 and 1/3, there is no gap, unlike the MFA which predicts a gap. For ®=m /n (with m > 1),
there is a gap, opening up the possibility that a superfluid may form for any rational value of the statisti-
cal parameter. A physical realization of the ®=1/2 flux lattice is proposed and a connection between
the ®=m /n lattice and the fractional quantum Hall effect is discussed.

I. INTRODUCTION

It has been known for a very long time that identical
particles fall into two broad categories: fermions and bo-
sons. It has been known for only sightly over a decade,
however, that such a division is really a manifestation of
our living in three spatial dimensions. In two dimensions
there exists the possibility of identical particles character-
ized by a continuous parameter, which for certain values
produces the familiar bosons and fermions, but also inter-
polates between these two cases.!”* Such particles,
known as anyons, were originally proposed as mathemati-
cal curiosities, but have since been invoked in theories of
the quantum Hall effect® and high-7, superconductors,®
both of which are quasi-two dimensional.

The method used to implement the arbitrary phase for
anyon exchange® is to exploit the Aharonov-Bohm
effect.” To each anyon is attached a fictitious charge ¢,
and a fictitious magnetic flux ® which is confined to an
infinitesimally thin tube. The flux produces a vector po-
tential

An=229 )
2 r
For a path in which one particle circles another the phase

induced by the Aharonov-Bohm effect is given by

exp(i2a [ d1- A)=exp(i2®q) . 2)

Here and throughout this paper #i=c =1. The factor of 2
in Eq. (2) comes about because each charge acquires a
phase from the vector potential of the other particle.
Since a circling path is equivalent to two exchanges the
phase given by Eq. (2) is twice the phase from inter-
change and we see that by setting a =g ® the flux/charge
composites acquire a phase of exp(ia) for paths that in-
terchange particle positions. For a=0,2m,4m, ..., the
particles are bosons, while for a=m, 3m,..., they are
fermions.

It is important to keep sight of the fact that A(r) is
purely fictitious and should not have any independent dy-
namics.> If A(r) were given the dynamics of the real

4“4

electromagnetic field it would have a finite propagation
velocity. This is unacceptable because we wish to assign
phases to paths based only on their topology (i.e., the
number of times the paths interchange particle positions).
We do not want the phase to depend on the distance be-
tween the paths, as it would if A(r) propagated at a finite
velocity. In other words, statistics propagate instantane-
ously. Also, there are no Coulomb interactions between
the charges. The charge and flux are completely fictitious
and are used only to provide the statistical phase.

Anyons are especially difficult because of the long-
range interaction which is made more problematic by its
topological nature. One approach to anyon physics has
been the mean-field approximation (MFA).® The idea is
that in a gas any one particle sees the flux due to all the
other particles smeared out over the area of the gas. For
a number density p and statistical parameter a=q®
there is an average flux density given by p®. The MFA
consists of replacing this flux density with an effective
uniform magnetic field of strength

B g=p® . 3)

In this approximation the problem simplifies consider-
ably. The solutions for a spinless particle of charge g in a
magnetic field are Landau levels® with energy

E=n+})o, o.=qBg/m . 4)

The MFA was the starting point for Laughlin’s propo-
sal that an anyon gas spontaneously forms a superfluid. ®
Laughlin noted that if the statistical parameter takes on
the value a=2w/I for some integer /, then / Landau lev-
els are completely filled. This means that the next avail-
able state is w, higher in energy and the gap indicates a
superfluid. The MFA argument is by no means a proof
of superfluidity, although it is a strong indication and
other methods indicate a superfluid as well.

There are some nagging questions about the MFA as
applied to anyons. Typically an MFA involves averaging
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a real magnetic field. For example, in magnetic systems
the field at a particular location may be taken to be the
average field produced by nearby particles in the system,
even though B varies spatially. Anyons, however, do not
actually produce magnetic fields since such fields are
confined to the infinitesimally small region inside the flux
tube. In fact, the background in which any particular
anyon wanders about has VX A(r)=0, whereas the
MFA replaces this with an effective A(r) for which
VX A(r)#0. One might consider averaging A(r), in-
stead of B, but the results would be quite different. For a
uniform gas there would be as many flux tubes on one
side of a particle as on the other. The vector potential
would then average to A(r)=0 and we would have a free
particle. These arguments are obviously simple-minded,
but they point to the uncertainties in how to approximate
a gas of anyons. While there is a great deal of experience
in dealing with the MFA as applied to systems with real
magnetic fields, it is less clear how to handle multiple
Aharonov-Bohm scattering.

In this paper we will examine an anyon system that can
be solved numerically and compare the results with the
predictions of the MFA. In Sec. II the test system, the
flux lattice, is introduced and the method used to solve it
is discussed. Section III contains the results, and a com-
parison with the MFA. Finally, in Sec. IV two experi-
mental applications of the flux lattice itself are presented.

II. THE FLUX LATTICE MODEL

The MFA, though appealing in its intuitive simplicity,
is not altogether convincing. For the reasons outlined
above it is conceivable that some subtlety prevents it
from adequately describing the anyon gas. As a test we
require a solvable system of anyons involving a large
number of particles. An interesting candidate is a system
in which all but one of the anyons are held at fixed posi-
tions on an infinite square lattice and the remaining parti-
cle is free. The MFA is applicable to the system since the
fixed anyon flux tubes may be replaced with a uniform
B 4. Unlike the anyon gas, however, the single particle in
a lattice background can be solved, and the results com-
pared with the MFA. It is also an interesting model by
itself since we have a periodic system, but with only
Aharonov-Bohm scattering off the “crystal.”

This may also be regarded as a different kind of MFA
in which flux is distributed throughout the system, but is
not smeared outside the flux tubes. The background field
is an average from all the other particles, retaining the
realistic feature that VX A(r)=0 everywhere. Using a
lattice as a substitute for the MFA has some obvious
problems. Not only are the particles constituting the
background fixed and thus nondynamical, but there is
long-range order as well. However, at a low enough tem-
perature the gas will freeze and develop long-range order
anyway. Then a single particle in a fixed lattice back-
ground resembles the onset of melting.

The fixed anyon system may be modeled as a free parti-
cle with charge g in a square two-dimensional lattice of
infinitesimal tubes containing flux ®. The Hamiltonian is
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H=%{P+q AT, (5)
m

where A(r) is the vector potential due to all of the flux
tubes. The apparent asymmetry between the free charged
particle and the fixed flux tubes does not matter since
only one particle has any dynamics. The free particle ac-
quires a phase by circling the fixed particles, but the fixed
anyons cannot pick up phases from circling one another,
so they need not carry charges. This model bears a
resemblance to models with periodic magnetic fields. '>!!
The crucial difference is that here B=0 everywhere, al-
though there is a nonzero periodic A(r).

At this point it is convenient to fix the value of gq.
Since only a=®gq is of concern we may fix the charge ¢
and consider different ®’s. The choice ¢ = is nice be-
cause then @ is in units of flux quanta. For ®=0 we
have bosons and for ® = we have “half fermions,” par-
ticles with statistical parameter midway between bosons
and fermions. Throughout this paper the value ¢ =7 will
be used.

Since A(r) is defined only up to a gauge transforma-
tion we must pick a gauge. Rather than requiring A(r)
to satisfy an equation it is more useful to consider partic-
ular gauge field configurations which simply give the
desired phases. The most convenient gauge for our pur-
poses is known as the singular gauge, in which A(r) is
zero everywhere except along a line extending from the
flux tube to infinity, along which

A(r)=o38(y), x>0. (6)

Here we have taken the flux tube to be at the origin and
the phase discontinuity to run along the x axis. In the
singular gauge the Aharonov-Bohm phase acquired in go-
ing around the flux is contained entirely in the phase
discontinuity.

Clearly there is nothing special about a straight line
and the phase discontinuity may be deformed in any
manner desired, so long as it starts on the flux tube and
goes off to infinity. This is advantageous for more than
one tube. The discontinuity from one tube can be made
to pass through a second tube, after which the two
discontinuities are deformed to coincide on their way to
the third, and so on. Once the last flux tube has been
reached, the discontinuities continue off to infinity to-
gether. In this way a system of many flux tubes may be
built up so that A(r)=0 everywhere except along a line
connecting the flux tubes. For coincident discontinuities
the phase is given by the product of the phases from
each. Therefore, if the total flux contained in the tubes
strung together is an integral multiple of a flux quantum
the discontinuity leaving the last tube is the trivial
A(r)=0. An example is shown in Fig. 1 in which two
flux tubes containing ®; and <P, are joined. If
®,+P,=1, then the discontinuity going off to infinity
has the trivial phase 1 which may be omitted.

To compute the flux lattice band structure we assume
the wave function to be of the form

P =upexplik-r) , (7)
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where u, is defined in some unit cell with periodic bound-
ary conditions. The first job is to determine the periodici-
ty of the Hamiltonian, and hence the minimum accept-
able unit cell for u,. Naively we might think that the
periodicity of the flux tubes reflects the periodicity of the
Hamiltonian since a single tube translated by all lattice
vectors appears to generate the infinite lattice. However,
the Hamiltonian depends on the gauge field A(r) and we
must examine how A(r) behaves under translations. The
behavior of H is determined by the properties of the mag-
netic group. > For the system at hand, however, it is easy
to derive the transformation properties of H by exploiting
the simplicity of the singular gauge.

First we will show that the unit cell must contain an in-
teger number of flux quanta. Consider the naive unit cell
containing only one flux tube, as shown in Fig. 2. With a
nonintegral flux the phase discontinuity goes off to
infinity, running into the cell boundary. If we try to gen-
erate the entire lattice by repeating this unit cell the
points where the discontinuities stop at the cell boun-
daries are sites of phantom flux tubes. A charge circling
the intersection of the discontinuity and the boundary
will cross the discontinuity only once, thus acquiring a
phase. This phase is opposite to that from circling the
real flux tube because the discontinuity is crossed in the
opposite direction. That is, circling the original flux tube
gives A, =exp(i2mr®) while the phantom point at the
boundary gives A, puniom=€xXp(—i27®). The naive unit
cell does not generate the desired lattice but one with ex-
tra flux present. Furthermore, since the path of the
discontinuity is part of the gauge freedom, the location of
the phantom flux tube is not gauge invariant. A different
choice of (singular) gauge would give a discontinuity
which hit the cell boundary at a different point, resulting
in a different phantom lattice.

If the unit cell contains an integral amount of flux the
discontinuities may be arranged so as not to run into the
cell boundary and the above problem is avoided. Such a
unit cell is suitable for computing the band structure,
provided that we recognize that the true unit cell is larger
still. To see this, consider Fig. 3 in which there are n flux
tubes each with flux ®=m /n. Generating the rest of the
lattice requires translating the unit cell, which should be
regarded as taking place in the presence of the charged
particle. Translating in the £ direction, the particle may
acquire a phase from crossing one of the discontinuities,
with the phase determined by which discontinuity is
crossed. Since the phase depends on the positions of the

exp(id,) exp(i®; + i®,)

FIG. 1. Two flux tubes ®; and ¥, in the singular gauge
showing how their phase discontinuities are combined. Phases
shown are for a particle with unit charge crossing the direction
shown.
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FIG. 2. A unit cell containing a flux tube with a nonintegral
amount of flux. In the singular gauge the discontinuity runs
into the cell boundary. When the cell is repeated we see a phan-
tom flux tube located at the position where the discontinuity
runs into the cell boundary.

discontinuities, it is gauge dependent. If, however, n
copies of such a cell are stacked together the particle
crosses n discontinuities and picks up a trivial phase
exp(i2mn /n). Therefore, the true unit cell reflecting the
translational symmetry of the Hamiltonian is a square
with » flux tubes on a side.

The 1Xn unit cell will suffice with proper interpreta-
tion, which is fortunate since the numerical problem is
more formidable for an n Xn cell. The 1Xn cell displays
a phase change from cell to cell, but this may be absorbed
into a redefinition of k in Eq. (7). Thus, the ambiguity of
the 1Xn cell only involves an incorrectly defined Bril-
louin zone. Since we know the true unit cell is n Xn, the
(incorrect) 1 X n unit cell gives a zone which is n times too
large in the X direction. We may compute using the 1Xn
cell, and merely truncate the zone to 1/n of its size in the
X direction.

Having identified the unit cell, we now turn to the
computation of the band structure. Solving
Schrédinger’s equation for the flux lattice is sightly
different from what one usually faces in computing
bands. We could do a variational calculation using a set
of basis functions, however the phase discontinuities
would require us to enforce boundary conditions on the
interior of the cell in addition to the periodic boundary
conditions already enforced. Furthermore, these interior
conditions do not involve simple periodicity, but rather
phase relationships. For this reason standard band
theory techniques are not well suited.

Instead, our approach is to discretize the unit cell. By
using a mesh the Hamiltonian becomes a large sparse ma-
trix which may be numerically diagonalized to find the
exact eigenvalues for the discrete system. The eigenval-
ues of the continuum problem are computed by solving
for a series of meshes with progressively finer spacings
and extrapolating to the continuum limit. Such a brute

N exp(i2 /5)

FIG. 3. A unit cell containing 5 ®=1 flux tubes. A particle
translated in the X direction can cross a phase discontinuity.
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force approach would be unacceptable for most solid
state systems because in three dimensions the number of
mesh points grows so fast that the Hamiltonian quickly
becomes of an unmanageable size. In two dimensions the
computations are within reach of a desktop computer.
(Before going on we should clear up a potential problem
in terminology. The mesh is a latticization of the unit cell
of a flux lattice. To avoid confusion the discretization of
the unit cell will always be called a mesh and “lattice”
will be reserved for the lattice of flux tubes.)

To construct H,,, we must compute the link variables
from the distribution of flux tubes, which is quite simple
in the singular gauge. Link variables give the phases for
going from one site to the next, so only those links
traversed by a discontinuity are different from U =1. To
construct H,,, we fix the positions of the flux tubes
within the unit cell, connect them with phase discontinui-
ties, check which links are crossed, and assign the ap-
propriate phase to each link.

Before going on to the numerical computations, we
note an interesting fact: lattices with flux ® and 1—@
have identical energies. Let the matrix H, denote the
Hamiltonian for a lattice of flux tubes ®. The matrix ele-
ment connecting sites m and n is

HY <exp(i2mp®) , (8)

where p is the number of discontinuities which happen to
cross the link connecting sites m and n. Then the Hamil-
tonian for a flux lattice with flux —® has matrix ele-
ments.

H, ®<exp(—i2pm®) )
so that
H,'=(Hpy)* .

But since H,,,, is Hermitian, the (real) eigenvalues of H,,,
and H}, are the same, and H,, and H,» have the same
eigenvalues. Clearly the Hamiltonian is periodic in @
with period 1 since addition of a single flux quantum to
each (infinitesimal) flux tube leaves all of the link vari-
ables unchanged. Therefore the flux lattices with & and
1—® have the same energies. This is something of a help
since it means that there are only half as many computa-
tions to do.

III. BAND STRUCTURE

Some of the results of the numerical calculations are
shown in Figs. 4—-13. Altogether 18 different flux lattices
were considered with ®=m /n for denominators running
from 2 to 9, and with ®= 2, 2, £, and 3. Lattices with
m /n > 1 were ignored since they are identical to those
with ®=1—m /n, as shown in the previous section. All
diagrams use 1/(ma?) as the unit of energy, where a is
the spacing between flux tubes and all states are counted
in units of states/(flux tube) rather than states/(flux quan-
tum). The corresponding graphs obtained by the MFA
are indicated by dotted lines.

Along each direction in the Brillouin zone energy lev-
els were calculated at 10 evenly spaced values of k to ob-
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FIG. 4. Band diagram for ®=1.

tain the band diagrams. Energies were computed by di-
agonalizing four matrix Hamiltonians with 7, 9, 11, and
13 mesh sites per side of a square containing one flux
tube. The unit cell contained n such squares, stacked to-
gether as in Fig. 3. Eigenvalues were computed using the
Lanczos algorithm.!> The continuum energies were
found by extrapolating the energies as a function of mesh
spacing with a polynomial fit to the four eigenvalues.'*
The density of states (DOS) was calculated by first com-
puting energies on a 10X 10 grid within the Brillouin
zone, then using a two-dimensional polynomial interpola-
tion to compute energies at points on a 500X 500 square
grid in k space. The energies were counted in 300 bins
and normalized to give states/(flux tube).

In Fig. 4 we see the bands for &=, corresponding to
half fermions. The key feature is the absence of an ener-
gy gap. The lowest and second lowest bands meet at the
M point, in contrast to the MFA prediction of a gap. In
general, the agreement with the MFA is rather poor.
While the lowest band is flat throughout most but not all
of the zone, many of the higher bands look like shifted
free particle dispersion relations. The relative flatness of
the lowest band and the near gap at the M point is made
very clear in the DOS, shown in Fig. 5. That the lowest
band is flat throughout most of the zone is demonstrated
by the narrow low-energy peak in the DOS. The ®=1
flux lattice appears to be on the edge of agreement with
the MFA, at least so far as an energy gap is concerned.
There is some correlation between the MFA and the flux

DOS (units of mazstates/flux tube)

0.5
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| L T I 1111 I 11 1
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FIG. 5. DOS for ®=1.
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lattice in that the spacing of the DOS peaks is about
equal to the Landau level spacing. The failure of the
MFA is interesting because &= 1 is the simplest nontrivi-
al case and if a gap were generic for any value of a we
would expect a gap here.

For ®=1 the agreement with the MFA improves
slightly. Figure 6 shows that a gap between the first and
second bands has opened up at the M point. Some of the
curvature seen for ®=1 is present, especially in the
higher bands, but the lowest band looks very much like a
flat Landau level. The DOS shows a clear gap above the
lowest-lying band, followed by a series of ‘“‘near gaps,”
much like those seen for ®=1. The presence of a gap
above the lowest band does not quite confirm the MFA,
however, since the MFA requires self-consistent filling.
Each band contains a total of § states/(flux tube), so the
MFA requires that we fill the first three bands. The third
and fourth bands touch at the M point and the MFA fails
by predicting a nonexistent gap.

As we proceed though lattices with ®=1/n there is a
clear progression toward flat, evenly spaced bands, and
for ® <1 there is a gap at self-consistent filling. The en-
ergies lie above the corresponding Landau level energies,
though they approach the Landau levels as n gets larger.
Despite the upward shift in energy over the MFA predic-
tion, the spacing between bands matches the MFA pre-
diction very well. Also, the higher-lying curved bands
still give pronounced peaks in the DOS. The bands and
DOS shown in Figs. 8 and 9 show the good agreement
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FIG. 7. DOS for &= %
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FIG. 8. Band diagram for &=

1
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with the MFA for ®=1.

We now turn to lattices with ®=m /n, with m > 1.
For these lattices the complicated band structure makes
it more illuminating to look at the integrated DOS
(IDOS). Since this counts the number of states below a
given energy, steep rises indicate peaks in the DOS (ap-
proximate Landau levels), while plateaus indicate energy
gaps. The IDOS for ®=2Z and 3 are shown in Figs. 10
and 11. The m /11 lattices were chosen to best show the
effect of increasing the numerator. Other denominators
show the same qualitative features.

In all cases the lowest m bands are very closely spaced,
appearing in the IDOS as m nearby steps. In a few cases
the bands are so closely spaced that they look like a sin-
gle degenerate band, although the energies are numerical-
ly distinct. Each MFA Landau level contains m /n states
per flux tube. For the flux lattice the corresponding Lan-
dau level is actually composed of m closely spaced levels,
each containing 1/n states per flux tube.

At low energies the levels containing 1/n states are
clustered into groups of m levels, giving the appearance
of an MFA Landau level with m /n states. At higher en-
ergies there are still steps in the IDOS, but they appear at
energy spacings corresponding to ®=1/n, not ®=m /n.
That is, they are spaced at fractions 1/m of an MFA
Landau level. The energy at which the 1/#x steps become
pronounced is indicated by the size of m /n. Agreement
with the MFA persists to higher energies for smaller

m/n. For <I>=% the low-lying states look much like
0
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FIG. 10. Integrated DOS for = 2.

MFA Landau levels, only to break into 1/n type Landau
levels after the first few m /n type steps. On the other
hand, for ®=2 even the first step is broken into five
closely spaced steps. As a consequence of the 1/n spac-
ing all of the m /n lattices have an energy plateau at a
filling of one state per flux tube. This result differs
markedly from the MFA, which predicts that at self-
consistent filling the highest occupied Landau level is
partially filled, producing no gap. Instead the m /n lat-
tices do have a gap at self-consistent filling, a feature
completely missed by the MFA.

An interesting quantity to examine is the total energy
of a flux lattice with states filled up to 1 state/flux tube.
This is plotted in Fig. 12 as a function of flux, with &> 1
included. The total energies are fairly regular in their
dependence on ®, with only slight scatter about a smooth
curve. Only for ®=1 is there much deviation from the
smooth curve, which is attributable to the fact that &=1
is gapless. It should be noted that ®=1 has no gap at
the Fermi level, although it has a gap between the first
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FIG. 12. Total energy per particle for self-consistent filling as
a function of flux.

and second bands. This explains why its total energy is
not anomalous like that for ® =1, since the filled states
are approximate Landau levels.

The energy gaps at the Fermi level for self-consistent
filling, shown in Fig. 13, are less systematic in their
dependence on ®. Nonetheless, the gaps for m /n lattices
are comparable to those for 1/n. In fact, for the %, 3,
and ¢ lattices the gaps are considerably larger than any of
the 1/n lattices. The gaps are more systematic if one
considers a fixed denominator. For a given n the gap at
self-consistent filling increases with m, and it seems
reasonable to postulate that as m /n — 1 the gap widens,
although at m /n =1 there is no gap.

In summary, the MFA and the flux lattice are in quali-
tative agreement for ®=1/n <3. The spacings between
levels agree with the MFA remarkably well. For all
®=1/n <1 there is a gap at the Fermi level for a filling
of 1 state/(flux tube). The states for ®=m /n agree with
the MFA only for the lowest few Landau levels. For
higher energies approximate Landau levels occur at spac-

1
2

total states

.lllll}lllllllllll

0 2 4 6 8
Fermi level [1/(m32) ]
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filling as a function of flux.
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ings corresponding to 1/m of the energy predicted by the
MFA. This leads to an energy gap at 1 particle per flux
tube that is not seen in the MFA. Therefore, all the flux
lattices have gaps at 1 particle per flux tube, not just
those with ®=1/n. This surprising result demonstrates
that confining flux to tubes gives energy levels which are
qualitatively different from those for a uniform field. If
we regard the flux lattice as a new MFA in which flux
tubes are uniformly distributed rather than flux itself, we
would be led to the conclusion that any a=mm /n gives
rise to a superfluid. Whether or not this feature is spoiled
by giving dynamics to the background particles is an
open question.

IV. EXPERIMENTAL CONSEQUENCES

Beyond its implications for the anyon MFA the flux
lattice may have other applications, two of which will be
considered here. First, we will examine the possibility of
actually manufacturing a flux lattice. We will then exam-
ine some of the similarities between the flux lattice and
the fractional quantum Hall effect.

The most familiar flux lattice is the Abrikosov lat-
tice,* formed by the flux which penetrates a type-II su-
perconductor placed in a magnetic field. Unlike the lat-
tices considered in this paper, the Abrikosov lattice is
composed of tubes containing one flux quantum, given by
& =m/e. To obtain a lattice of fractional flux we may
exploit the fact that the flux quantum in an ordinary con-
ductor is 2®dy;, since the charge carriers are single elec-
trons rather than Cooper pairs. If a quasi-two-
dimensional electron gas in close proximity to a layer of
type-I1 superconductor were placed in a magnetic field,
the flux tubes coming out of the superconductor would
contain ®y;, which is J the flux quantum for the electron
gas. This provides a physical realization of the ® =1 flux
lattice.

Abrikosov flux tubes are typically on the order of 10>
cm in diameter, with a somewhat larger spacing between
flux tubes.!'® This means that in order to minimize the
divergence of the flux once it leaves the superconductor
the electron gas thickness and distance to the supercon-
ducting layer must be less than 10> cm. Such a struc-
ture could be fabricated using a GaAs quantum well with
thin AlAs barriers, upon which would be deposited a lay-
er of superconductor. An additional requirement is that
the quantum well have sufficiently high mobility that the
coherence length is longer than the flux tube spacing.
Since coherence lengths of 100 um are achievable!” this is
no problem.

An obvious difference between such an arrangement
and the ®=1 lattice considered in Sec. II is that the
Abrikosov lattice is hexagonal. This is a minor incon-
venience, however, as only the fine details of the band
structure will change. More serious are the departures
from ideal flux tubes. Not only do real flux tubes have a
nonzero cross section, but the electrons are not excluded
from the interior of the tube. A possible remedy is to use
a focused ion beam to make a lattice of damaged spots. '®
If this was done to the complete superconductor-
semiconductor system the dots would be aligned in both
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layers. The damaged areas of the superconductor would
pin the flux tubes, while the damaged regions of the elec-
tron gas would exclude the electrons from the flux tube
interior. An added benefit is that the flux tubes could be
arranged in any desired lattice. Damage will, however,
reduce the coherence length in the electron gas by a fac-
tor of =300, possibly making the undamaged version
more useful. '®

Construction of a real flux lattice seems limited to
®=1. To explore other values of flux we may take a
more indirect approach. There is an intriguing similarity
between the ®=m /n flux lattices and the fractional
quantum Hall effect (FQHE). In the FQHE there are en-
ergetically favorable states when a rational fraction of a
Landau level is filled. Similarly, for the ®=m /n flux lat-
tices the MFA predicts Landau levels, while the calcula-
tions show that when a fraction p/m of a MFA Landau
level is filled there is a gap to the next available state.
The size of the gap depends on the arbitrary integer p,
and which Landau level is being filled. Therefore, if the
applied magnetic field in the FQHE were represented as
®=m /n flux tubes, then the stability at fractional filling
would follow from the results for the flux lattice. That is,
with a uniform magnetic field we find energy gaps with
Landau level spacing, while if the field is concentrated
into flux tubes with ®=m /n we find new energy gaps
when p /m of a Landau level is filled.

The similarity is suggestive, but there are differences to
recognize. In the flux lattice the filling fractions at which
gaps appear are p /m, and since m can be anything at all
any fraction is possible. The FQHE, however, usually
shows gaps at fractions with odd denominators, with
even denominators appearing only under extreme condi-
tions of high magnetic field. Since even denominators are
believed to be associated with the electron’s spin, they
should not appear in a spinless treatment of the problem.

Another difficulty is that there is no apparent reason
for the flux from the uniform field to fragment into frac-
tional flux tubes. The total energy for the flux lattice
filled to some Fermi level is higher than for a uniform
magnetic field with the same filling. This indicates that
the uniform field states are energetically favored over the
fractional flux states represented by the flux lattice. Ex-
amination of the total energy versus Fermi level shows
this to be true for all the flux lattices considered. If some
way could be found to make the fractional flux state
stable, or even metastable, there might be interesting
consequences.

Since the results of Sec. IT depend only on the product
q®, a fractional charge would produce identical results in
the presence of tubes containing one flux quantum. Since
the quasiparticles in the FQHE do indeed carry fractional
charge, the connection between the flux lattice and the
FQHE may involve the fractional charged quasiparticles
rather than fractional flux.
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