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Optical properties of semiconductors can exhibit strong polarization dependence due to crystalline anisotropy.
A number of recent experiments has shown that the photoluminescence intensity in free standing nanowires
is polarization dependent. One contribution to this effect is the anisotropy of the dielectric function due to the
fact that most nanowires crystalize in the wurtzite form. While little is known experimentally about the band
structures of wurtzite phase III-V semiconductors, we have previously predicted the bulk band structure of nine
III-V semiconductors in the wurtzite phase. Here, we predict the frequency dependent dielectric functions for
nine non-nitride wurtzite phase III-V semiconductors (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb).
Their complex dielectric functions are calculated in the dipole approximation for light polarized parallel and
perpendicular to the c axis of the crystal. Momentum matrix elements are evaluated on a dense grid of special
k points using empirical pseudopotential wave functions. Corrections to the momentum matrix elements, to
account for the missing core states, are made using a scaling factor which is determined from the zinc-blende
polytypes. Simple analytic expressions are provided for the dispersion relations in the vicinity of the respective
fundamental absorption edges.
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I. INTRODUCTION

Frequency-dependent reflectivity and absorption spectra
have been a fundamental tool for studying the band structures
of semiconductors. In semiconductors with wurtzite (WZ)
structure, the optical properties are very strongly polarization
dependent1–6 due to the crystalline anisotropy. The optical
selection rules for WZ7,8 dictate which polarization depen-
dent interband transitions are allowed. This helps in further
resolving the band structure for WZ and is used to determine
crystal-field splitting and spin-orbit splitting energies.

A number of recent experiments have measured the optical
polarization dependent photoluminescence(PL) intensity in
free standing nanowires.9–15 These results reveal a very strong
polarization dependence in the PL intensity depending on
whether the incident light is polarized parallel or perpendicular
to the growth axis of the nanowire. This polarization anisotropy
has been attributed to effects, such as heavy- and light-hole
mixing,16 a large dielectric contrast between the nanowires and
their surroundings,9 and the intrinsic band structure properties
of the nanowires.17

It is well known that III-V semiconductor nanowires easily
tend to crystalize in the WZ phase rather than in the zinc
blende(ZB) (which is the more stable phase for non-nitride
bulk III-Vs). In general, semiconductors can crystallize in their
non-naturally occurring phase under extreme thermodynamic
conditions. For example, WZ phase diamond (Lonsdalite) can
be synthesized directly from cubic diamond using rapid shock
wave compression.18 Similarly hexagonal phases of Si and
Ge can be observed under high pressure as well.19,20 III-V
semiconductors typically tend to crystalize either in β-Sn,
nickeline (NiAs), or rocksalt structures when subjected to high
temperature and pressure. Their occurrence in the bulk WZ
phase has been rare with the exception of a recent experiment in
which bulk WZ phase GaAs was synthesized.21 However when
grown as a nanowire, III-V semiconductors tend to crystalize
in the WZ phase. Several theoretical explanations have been
proposed for the nanowire’s WZ structure. It has been

attributed to factors such as small nanowire radii,22,23 growth
kinetics,24 interface energies,25 and electron accumulation at
the catalyst’s interstitial site.26

As the non-nitride III-V semiconductor nanowires tend to
crystalize in the WZ phase rather than the stable bulk ZB phase,
it is likely that their observed polarization dependent optical
anisotropy is partly due to its WZ crystal structure. However,
bulk WZ phase III-V semiconductors do not naturally occur.
Hence, without bulk samples it is not possible to determine
the optical properties with traditional absorption and emission
measurements.

In Ref. 27 we predicted the bulk band structure of nine
non-nitride III-V semiconductors in the WZ phase using
empirical pseudopotentials, including SO interactions. These
calculations were based on transferable model pseudopoten-
tials assuming ideal relations between the ZB and WZ phases
and their lattice constants. The spherically symmetric ionic
model potentials for the ZB phase were first obtained by fitting
the calculated transition energies to experimental transition
energies at high symmetry points. The WZ phase band
structures were then obtained by transferring the model ionic
pseudopotentials to the WZ pseudopotential Hamiltonian. This
is justified because in both ZB and WZ, all of the nearest neigh-
bors and nine out of the twelve second nearest neighbors are
at identical crystallographic locations,28 while all the second
nearest neighbors are equidistant. This method has proven to
be quite successful in the past, in obtaining band structures of
various polytypes.29–33 Our agreement with experiment was
excellent for the known band gaps of InP, InAs, and GaAs.
As the empirical pseudopotential method provides an accurate
description of the band structure of semiconductors, it can
also explain much of the observed intraband and interband
transitions in the optical absorption spectra.33,34

Note that in general pseudopotential form factors can be
obtained in two different ways—empirically (where the form
factors are adjusted to match experiment) and from first
principles methods. In the case of ab-initio methods, there
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are no adjustable parameters per se, however the calculated
structural, electronic, and vibrational properties can vary
substantially depending on the choice of functionals.35–38 Most
first principles methods have well known shortcomings when
it comes to predicting band structures. Empirical pseudopo-
tential methods (EPMs) are therefore quite advantageous in
this regard, and in addition they are also well suited for large
supercell calculations.

In this article, we predict the frequency dependent linear
dielectric function for the WZ phase of nine III-V semicon-
ductors, based on our previous empirical pseudopotential band
structure calculations.27 The dielectric functions are calculated
in the linear optical response regime within the electric dipole
approximation. The required momentum matrix elements are
obtained by using the calculated wave functions from our
previous calculations.27

In general, the momentum Matrix elements need to be
corrected as the pseudo-wave-functions do not include the core
states. Such corrections have been made using nonlocal cor-
rection terms.39–42 Nonlocal corrections can also be included
to account for exchange and correlations effects which can
lead to improvements in the calculated optical properties.43–45

For our calculations nonlocal effects are included in the form
of spin orbit interactions. Since the optical spectra of the ZB
phase of the III-Vs are already known, we make additional
corrections to the optical spectra by using the optical sum
rules to correct the static dielectric function ε0. Since the
core states of the constituent elements of the two polytypes
is the same, corrections to account for the missing core states
should be the same for both ZB and WZ forms. By using the
optical sum rules, a set of constants can be obtained which
normalizes the calculated ZB ε0 to experimental ZB values.
These normalization constants are then transferred to their
respective WZ polytypes which then account for corrections
to their dielectric functions.

Our calculations are carried out within the one-particle
picture to help interpret the polarization dependence of the
nanowires. Much work has been done in recent years to
include the effects of electron-hole interactions in the dielectric
function.46–52 For many first principles calculations, it has been
seen that the two particle contributions improve agreement
with experiment for the low energy part of the optical spectrum
of semiconductors, mostly by readjusting the heights of the
E1 and E2 peaks.46 While these corrections help to fine
tune the dielectric spectrum’s agreement with experiment for
many materials, the dominant contribution to the dielectric
function comes from one-particle calculations, which by them-
selves are in very good agreement with experiment in many
instances.53–55 Moreover, as dielectric functions calculated in
the single particle picture using the empirical pseudopotential
method are in far better agreement with experiment than ones
using ab-initio methods,33 perturbative corrections can be seen
to be less important for single particle EPM calculations. Often
times, the static dielectric function is overestimated in ab-initio
calculations56–58 and can be improved upon by the inclusion
of local field effects.47 However, these steps are not necessary
for our calculations as we are using a maximally constrained
EPM, in which our calculated static dielectric constant (in
ZB phase) is normalized to experiment, thus taking any
constant correction for ε0 into account. Local field effects can

shift peak positions,48 which improves ab-initio calculations
which suffer from discrepancies in excited state energies.
However, such corrections could have spurious effects for
optical properties calculated using EPMs.

This paper is organized as follows. In Sec. II, a brief
theoretical background of the optical properties is presented
along with our method for the calculations. The calculated
dielectric functions and reflectivity spectra are presented in
Sec. III along with our tabulated results for ε0. This is
followed by a brief discussion and summary. For the sake
of completeness, we also list some key details of our band
structure calculations from Ref. 27 in the Appendix.

II. OPTICAL PROPERTIES

Consider a semi-infinite crystal having a symmetry equiva-
lent to or higher than that of the orthorhombic crystal system.
If we choose our coordinate such that the z axis is the surface
normal and the x-z plane is the plane of incidence, then the
reflectivity for light polarized perpendicular to the plane of
incidence is given by59,60

Rs =
∣∣∣∣∣∣
cos θ − (

n2
y − sin2 θ

) 1
2

cos θ + (
n2

y − sin2 θ
) 1

2

∣∣∣∣∣∣
2

, (1)

where θ at an angle of incidence. Similarly the reflectivity for
light polarized parallel to the plane of incidence is

Rp =
∣∣∣∣∣∣
nxnz cos θ − (

n2
z − sin2 θ

) 1
2

nxnz cos θ + (
n2

z − sin2 θ
) 1

2
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2

, (2)

where nx , ny and nz are the complex indices of refraction. In
the case of an optically uniaxial crystal, such as WZ, if the
surface normal is parallel to the c axis, then nz = n|| and nx =
ny = n⊥. The linear refractive index n(ω) = √

ε(ω), where the
dielectric function can be written as

ε(ω) = ε′(ω) + iε′′(ω). (3)

In the linear response regime, the real and imaginary parts of
the dielectric function are related to each other by the Kramers-
Kronig (KK) relations

ε′(ω) = 1 + 2

π
P

∫ ∞

0

ω′ε′′(ω)

ω′2 − ω2
dω′, (4)

ε′′(ω) = − 2

π
P

∫ ∞

0

ωε′(ω)

ω′2 − ω2
dω′, (5)

where P is the Cauchy principle value.
For obtaining optical properties of the WZ semiconductors,

we first evaluate ε′′(ω) using our empirical pseudopotential
band structure calculations of Ref. 27 (also see the Appendix).
The real part ε′(ω) is numerically obtained using Eqs. (4) and
(5) is used to check for self consistency. In the electric dipole
approximation, assuming only direct band to band transitions
are allowed between an initial state i and a final state j , ε′′(ω)
is given by

ε′′(ω) =
(

h̄π2e2

m2ω2

)∑
ij

∫
BZ

|Mij |2δ(Ec,j (k)

−Ev,i(k) − h̄ω)d3k, (6)
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where
∫
BZ

is an integration over the entire Brillouin zone
(BZ),

∑
ij is a sum over all initial valence band and final

conduction band states, and Ev(k) and Ec(k) are the valence
and conduction band energies at their respective k’s. For the
delta function, we use

δ(�E − h̄ω) ≈ 2

1 + cosh[γ (�E − h̄ω)]
, (7)

where γ is an adjustable damping parameter that can be
used to incorporate lifetime broadening effects. We used
γ = 100 eV−1 which gives a transition linewidth of about
35 meV.61 The momentum matrix elements Mij for interband
transitions are obtained from the pseudo-wave-functions from
our empirical pseudopotentials for WZ,27 given by

φk(r) =
∑

G

c(k,G) exp[i(k + G) · r], (8)

where c(k,G) are the eigenvector coefficients at a given k. The
momentum matrix element between the states i and j is

Mij (k) = 〈
φi

k

∣∣p̂∣∣φj

k

〉
, (9)

where p̂ is the momentum operator. Using Eq. (8), Mij can be
rewritten in terms of the expansion coefficients as

Mij (k) = i
∑

G

c∗
i (k,G)cj (k,G)[(k + G) · ê], (10)

where ê is the polarization vector. The expansion coefficients,
ci and cj , are the eigenvectors of ith and j th states in
the pseudopotential Hamiltonian. ε′′(ω) is then calculated
using Eqs. (5), (6), and (10) for light polarized parallel
and perpendicular to the c axis. In practice, it is difficult
to explicitly evaluate the Brillouin zone integral in Eq. (6)
because of the prohibitively large number of k values that
would be required. However, integration schemes that allow
the BZ integral to be replaced by a sum over a set of special k

points can be used. We have used a set of 4.5 × 104 special k

points based on the scheme of Monkhorst and Pack.62

Momentum matrix elements calculated using the pseudo-
wave-functions must be corrected since the pseudo-wave-
functions do not include the core states. One method is
to include the commutator of the nonlocal pseudopotential
and the position operator,63,64 while Kageshima and Shiraishi
have proposed correcting the momentum matrix elements by
including a core repair term.39 Both techniques cause small
changes in the dielectric function. Monachesi et al. have
compared the dielectric functions of GaAs calculated with
ab-initio pseudopotential wave functions against calculations
with true electron wave functions, and they find virtually no
differences due to the missing core states.42 In our calculations
we take advantage of the fact that our pseudopotentials
are being transferred between polytypes, and hence any
core corrections should be nearly identical. We normalize
the calculated ε(ω = 0) to the experimentally known static
dielectric constant by making use of the optical sum rule

εo = 1 + C ′ 2

π

∫ ∞

0

ε′′(ω)dω

ω
, (11)

where C ′ is a scaling constant which is determined as
follows. First the dielectric functions for all the ZB phase
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FIG. 1. (Color online) Comparison between calculated and mea-
sured reflectivity spectra at normal incidence for zinc-blende phase
(a) GaAs and (b) InP.

semiconductors are evaluated using empirical pseudopotential
wave functions. The constant C ′ is then adjusted so that the
calculated ε0 for ZB matches experimental values obtained
from Ref. 65. By empirically fitting to ε0, this method
results in good agreement between theory and experiment for
frequencies ω > 0. As an example, we show a comparison
between the calculated and measured reflectivity spectra at
normal incidence for cubic GaAs and InP in Fig. 1. The
measured dielectric functions for GaAs and InP were obtained
from Ref. 66.

For the WZ calculations, ε′′
⊥ and ε′′

|| obtained using Eq. (6)
are multiplied by the same scaling constant C ′. We expect
this method to yield good results for the WZ semiconductors
since both polytypes consist of the same atomic species; so the
corrections to account for missing core states will be the same.

III. RESULTS AND DISCUSSION

The calculated ε0 for light polarized parallel and perpendic-
ular to the c axis are listed in Table I. The values listed in the
table show that generally, materials with heavier elements have
larger static dielectric constants. We also see that ε⊥

0 < ε
||
0 in

the case of GaAs, GaSb, and InSb, whereas ε⊥
0 > ε

||
0 for AlP,

AlAs, GaP, InP, and InAs.
For WZ materials, with the inclusion of spin-orbit inter-

actions, all zone center states belong to either a �7, �8, or
�9 representation (all in double group notation). The zone
center conduction band minima have either �7 or �8 symmetry,
and the valence band states are the �9 heavy hole, �1

7 light
hole, and a �7 splitoff hole. The interband transitions for WZ
are dictated by the polarization dependent optical selection

TABLE I. Calculated static dielectric constants for light polarized
parallel and perpendicular to the c axis, for nine WZ phase III-V
semiconductors.

Material ε⊥
0 ε

||
0

AlP 10.464 8.232
AlAs 10.853 9.165
AlSb 12.056 11.933
GaP 11.708 10.223
GaAs 12.481 13.066
GaSb 15.215 17.621
InP 12.812 10.435
InAs 16.782 13.610
InSb 16.952 19.379
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rules.7,8 For light polarized parallel to the c axis (E||), only
transitions between states with the same symmetry are allowed,
i.e., �7 ↔ �7, �8 ↔ �8, and �9 ↔ �9. For light polarized
perpendicular to the c axis(E⊥), the allowed transitions are
�7 ↔ �7, �8 ↔ �8, �9 ↔ �7, and �9 ↔ �8. Note that the
�7 ↔ �8 transition is forbidden for all polarizations.

The other high symmetry k-point transitions allowed for E||
are A7,8 ↔ A7,8, A9 ↔ A9, K4,5 ↔ K4,5, K6 ↔ K6, H4,5 ↔
H4,5, and H6 ↔ H6. For E⊥ the allowed dipole transitions
are A7,8 ↔ A7,8, A9 ↔ A7,8, K4,5 ↔ K6, and H4,5 ↔ H6.
The M and L point transitions (i.e., M5 ↔ M5 and L5 ↔ L5)
are allowed for all polarizations. For a comprehensive list of
optical selection rules for WZ at various high symmetry points
and along various directions, see Refs. 8 and 67.

The zone center transition energies for the first thirteen
states and their respective irreducible representations are
listed in Ref. 27. Our band structure calculations show that
the indirect gap ZB semiconductors (AlP, AlAs, AlSb, and
GaP) have direct band gaps in the WZ phase27 with �8

conduction band minima. These materials will be partially
optically active, with transitions from the �9 heavy-hole bands
allowed for E⊥, making them technologically important. The
other semiconductors with �8 conduction band minima in the
WZ phase are GaAs and GaSb. The indium containing WZ
semiconductors all have direct band gaps with �7 conduction
band minima and are optically active for all polarizations of
the electric field.

The calculated ε′(ω) and ε′′(ω) for light polarized parallel
and perpendicular to the c axis for the nine III-V semicon-
ductors of interest are shown in Figs. 2–4 The corresponding
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FIG. 2. (Color online) Real and imaginary parts of the complex
dielectric function as a function of incident photon energies and
polarizations for (a) E⊥ in AlP, (b) E|| in AlP, (c) E⊥ in AlAs, (d) E||
in AlAs, (e) E⊥ in AlSb, and (f) E|| in AlSb.
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FIG. 3. (Color online) Real and imaginary parts of the complex
dielectric function as a function of incident photon energies and
polarizations for (a) E⊥ in GaP, (b) E|| in GaP, (c) E⊥ in GaAs,
(d) E|| in GaAs, (e) E⊥ in GaSb, and (f) E|| in GaSb.

0 5 10 15

0

10

20

30

40

 h  (eV)

D
ie

le
ct

ric
 F

un
ct

io
n 

-

(a)

InP Im[ ]

Re[ ]

0 5 10 15

0

10

20

30

40

 h  (eV)

D
ie

le
ct

ric
 F

un
ct

io
n 

-

(b)

InP Im[
||
]

Re[
||
]

0 5 10 15

0

20

40

 h  (eV)

D
ie

le
ct

ric
 F

un
ct

io
n 

-

(c)

InAs Im[ ]

Re[ ]

0 5 10 15

0

20

40

 h  (eV)

D
ie

le
ct

ric
 F

un
ct

io
n 

-

(d)

InAs Im[
||
]

Re[
||
]

0 5 10 15

0

5

10

15

20

25

 h  (eV)

D
ie

le
ct

ric
 F

un
ct

io
n 

-

(e)
InSb

Im[ ]

Re[ ]

0 5 10 15

0

5

10

15

20

25

 h  (eV)

D
ie

le
ct

ric
 F

un
ct

io
n 

-

(f)
InSb

Im[
||
]

Re[
||
]

FIG. 4. (Color online) Real and imaginary parts of the complex
dielectric function as a function of incident photon energies and
polarizations for (a) E⊥ in InP, (b) E|| in InP, (c) E⊥ in InAs,
(d) E|| in InAs, (e) E⊥ in InSb, and (f) E|| in InSb.
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FIG. 5. Calculated reflectivity spectra at normal incidence for (a)
AlP, (b) AlAs, and (c) AlSb.
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FIG. 6. Calculated reflectivity spectra at normal incidence for (a)
GaP, (b) GaAs, and (c) GaSb.
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FIG. 7. Calculated reflectivity spectra at normal incidence for (a)
InP, (b) InAs, and (c) InSb.

reflectivity spectra for both polarizations are shown in Figs. 5–
7. The reflectivity spectra for the different WZ crystals are
distinct and depend on the details of their electronic band
structure. For the WZ semiconductors, the most prominent
features are typically seen up to about 7 eV. As expected, all
the WZ phase semiconductors exhibit optical anisotropy, the
degree of which varies with the semiconductor. The reflectivity
spectra for the two different polarizations shows several peaks
which originate from interband transitions along various high
symmetry points.

In order to illustrate the the dielectric function’s variations
about the fundamental absorption edge (FAE), we fit the
numerically calculated ε⊥ and ε|| (in the vicinity of their
respective band gaps) to the Lorentz oscillator model. The
real and imaginary parts of which are

ε′(ω) = 1 − f

2∑
j=1

ω2 − �2
j(

ω2 − �2
j

)2 − (�jω)2
, (12)

ε′′(ω) = f

2∑
j=1

�jω(
ω2 − �2

j

)2 − (�jω)2
, (13)

where f,�j , and �j were used as fitting parameters and are
listed in Table II. Typically, f is the oscillator strength, �j is
a relaxation rate and �j is a resonance frequency term. Note
that the real and imaginary parts of the dielectric functions
were separately fit to Eqs. (12) and (13).

These fits in terms of the Lorentz oscillators provides an
analytical expression for the dielectric function’s dispersion
relations, which could be useful for designing optical devices.
Note that the dispersion relations for different materials are
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78 valid only within a certain cutoff frequency (ωK as given in
Table II). This cutoff frequency indicates the region within
which the dispersion relation is smooth. The fitting parameters
(f s, �i’s, and �i’s) depend on ωK and as such are not
necessarily representative of the trends in the optical properties
of the III-V semiconductors.

In general, we find that the fitting parameter f is greater
for ε′′

⊥ than for ε′′
|| . Based on optical selection rules, this can be

explained by the fact that for E⊥ a transition between the
�9 heavy hole (HH) and the �7 (or �8) conduction band
(CB) is allowed. Hence the FAE is at the band gap (Eg).
For E|| the allowed transition with the lowest energy will
be between the �7 light hole (LH) and �7. As a result for
E||, InP, InAs, and InSb, the FAE will be at Eg + �1, where
�1 is the energy difference between the �9 heavy hole and
�7 light hole. In general, indium containing compounds have
prominent features in the reflectivity spectra near the FAE
as a number of valence band to conduction band transitions
are allowed. In all others (AlP, AlAs, AlSb, GaP, GaAs, and
GaSb), no noticeable sharp features are seen in the vicinity of
the FAE since they all have �8 CBs, and the optical selection
rules forbid transitions from the LH and the splitoff hole for
all polarizations and from the HH for E||.

The spin-orbit coupling can alter the ordering of the valence
band states in different WZ semiconductors. In our calcula-
tions, the valence band states in all materials except InSb have
normal ordering ( i.e, �9, �7, �7

7,68). The ordering of the va-
lence band states in InSb is complicated by the very large spin-
orbit splitting which forces the �7 splitoff hole below the next
�9 state, resulting in the unusual �9, �7, �9, �7 valence band
ordering. Attempts to optically measure the spin-orbit splitting
energy in the WZ type InSb could be complicated by this.

IV. SUMMARY

In summary we have calculated the optical properties of
AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb in the
WZ phase using empirical pseudopotentials. Their complex
dielectric function was evaluated as a function of incident
photon energy up to 20 eV for light polarized parallel and
perpendicular to the c axis. The dielectric functions were cal-
culated in the dipole approximation by evaluating the optical
momentum matrix elements using empirical pseudopotential
wave functions (from Ref. 27) on a grid of about 4.5 × 104

special k points. Corrections to the pseudo-momentum-matrix
elements to account for the missing core states are introduced
via a scaling factor, which is determined from the ratio of
the calculated to measured static dielectric function for the
corresponding zinc-blende polytypes. The reflectivity spectra
for all nine WZ semiconductors was also calculated for both
polarizations and was seen to exhibit optical anisotropy as well.
Finally, for each material the frequency dependent dielectric
function was fit to a Lorentz oscillator model in the vicinity of
the fundamental absorption edge, providing a simple analytic
expression for the dispersion relation.

In general it is seen that most of the III-V semiconductors
exhibit strong optical anisotropy. This suggests that among
other applications, these WZ semiconductors could find
potential use in nonlinear optics. For applications, such as
optical frequency conversion, nonlinear optical crystals have to
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be optically birefringent to satisfy phase matching conditions.
ZB phase III-V semiconductor crystals are not particularly
useful in this regard as they are optically isotropic whereas the
non-nitride WZ III-Vs are optically birefringent. This can lead
to a whole new class of nonlinear optical crystals.

APPENDIX

Here we present the details of our band structure calcula-
tions of the WZ phase of III-V semiconductors from Ref. 27.
Our band structure calculations closely followed the empirical
pseudopotential formalism of Cohen and Chelikowsky.33

However, rather than using discrete form factors we have used
continuous model potentials so that it is applicable to both ZB
and WZ structures. The pseudopotential Hamiltonian consists
of the kinetic, local pseudopotential, and SO interaction
terms:

H = −h̄2K2

2m
+ Vpp + Vso. (A1)

The position dependent local pseudopotential Vpp and
nonlocal SO interaction term Vso can be expanded in terms of
the reciprocal lattice vectors G. In case of binary compounds,
the local pseudopotential can be separated into symmetric (S)
and antisymmetric (A) parts,

〈G′|Vpp|G〉 = V S(G′ − G)SS(G′ − G)

+ iV A(G′ − G)SA(G′ − G), (A2)

where the symmetric and antisymmetric structure factors
are given by SS(G) = ∑

j exp(−iG · τ j )/N and SA(G) =
−i

∑
j Pj exp(−iG · τ j )/N . Here N is the number of atoms

per unit cell, and τ j is the basis vector of the j th atom in
the unit cell. Pj = +1 for one type of atom and −1 for
the other type. With type-1 atoms located at (0,0,0) and
2
3 a1 + 1

3 a2 + 1
2 a3 and the type-2 atoms are located at ua3 and

2
3 a1 + 1

3 a2 + ( 1
2 + u)a3, the WZ structure factors are

SS(G) = 1
4 (1 + e−iGzuc)(1 + e−iGya/

√
3+Gzc/2), (A3)

SA(G) = 1
4 (1 − e−iGzuc)(1 + e−iGya/

√
3+Gzc/2), (A4)

where Gy and Gz are the y and z components of G,
a1 = (1,

√
3,0)a/2, a2 = (1,−√

3,0)a/2, and a3 = (0,0,c) are
primitive lattice vectors. Here a and c are WZ lattice constants
and u = a/c.

The symmetric V S(G) and antisymmetric form factors
V A(G) are formed from the sum and difference of the
spherically symmetric anion and cation potentials. In the
empirical pseudopotential approach, the form factors are
adjusted to fit the calculated energy spectrum to experiment.
We took V S(G) and V A(G) to be continuous functions of G
using model potentials of the form69–71

V S(G) = x1G + x2

exp(x3G2 + x4) + 1
, (A5)

V A(G) = x ′
1G

2 + x ′
2 exp(x ′

3G
2 + x ′

4), (A6)

where G = |G|a/2π is a dimensionless number. The parame-
ters xj and x ′

j were first adjusted to fit the calculated ZB band
structure to experimental transition energies (see Table III for
a list of fitting parameters). The WZ pseudopotential for a
given binary compound is then constructed by combining these
spherically symmetric atomic form factors with the appropriate
structure factors for WZ [see Eq. (A2)].

For the SO interaction term we considered core shells filled
up to the d orbitals (depending on the valence shells of the
constituent elements of the III-V semiconductors). The matrix
elements for the SO interaction term in a binary compound are

〈K′,s ′|Vso|K,s〉 = −i(K̂′ × K̂) · 〈s ′|σ |s〉
× {[

λS
p + (K̂′ · K̂)λS

d

]
SS(G′ − G)

+ [
λA

p + (K̂′ · K̂)λA
d

]
SA(G′ − G)

}
, (A7)

where K = G + k, σ is a triad of Pauli spin matrices and s,s ′
are eigenstates of σz. Here the symmetric and antisymmetric
contributions to the spin-orbit Hamiltonian are defined by

λS
l = (

λ
(1)
l + λ

(2)
l

)/
2, (A8)

λA
l = (

λ
(1)
l − λ

(2)
l

)/
2, (A9)

λ
(1)
l = μlβ

(1)
nl (Ki)β

(1)
nl (Kj ), (A10)

λ
(2)
l = γlμlβ

(2)
nl (Ki)β

(2)
nl (Kj ), (A11)

where γl is the ratio of the anion to cation atomic-spin-orbit-
splitting energies72 for a given shell. The overlap integral βnl

is constructed from the atomic core wave functions

βnl(K) = C

∫ ∞

0
il
√

4π (2l + 1)jnl(Kr)Rnl(r)r2dr, (A12)

TABLE III. Lattice constants (a and c) along with the fitting parameters for symmetric and antisymmetric form factors used for the WZ
band structure calculations in Ref. 27. The form factors are in units of Ry. μ1 and μ2 are the fitting parameters for spin-orbit interactions.

Material a (Å) c (Å) x1 x2 x3 x4 x ′
1 x ′

2 x ′
3 x ′

4 μ1 μ2

AlP 3.866 6.313 0.083 − 0.579 0.031 − 2.586 − 0.11 0.9 − 0.061 − 1.178 0.012 0
AlAs 4.003 6.537 0.062 − 0.459 0.027 − 2.629 − 0.041 1.003 − 0.056 − 1.693 5.28 × 10−3 5 × 10−5

AlSb 4.338 7.085 0.06 − 0.412 0.032 − 2.548 − 0.09 0.17 − 0.051 − 2.098 7.26 × 10−3 2.96 × 10−4

GaP 3.854 6.294 0.085 − 0.457 0.04 − 2.566 − 0.351 5.165 − 0.205 0.339 0.385 −2.3 × 10−3

GaAs 3.997 6.528 0.058 − 0.467 0.023 − 2.583 − 0.063 1.091 − 0.074 − 1.298 0.052 8.3 × 10−6

GaSb 4.310 7.039 0.042 − 0.343 0.022 − 2.584 − 0.009 0.618 − 0.043 − 2.233 0.056 2.78 × 10−5

InP 4.151 6.778 0.049 − 0.385 0.027 − 2.602 0 0.847 − 0.059 − 1.654 0.243 −1.09 × 10−3

InAs 4.285 6.997 0.036 − 0.298 0.033 − 2.615 − 0.011 1.359 − 0.121 − 1.124 0.082 2.603 × 10−5

InSb 4.582 7.482 0.022 − 0.174 0.023 − 2.42 − 0.012 1.158 − 0.082 − 1.363 0.085 5.7 × 10−5
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TABLE IV. Fit coefficients for β ′
nl(K) for the outermost valence

p and d orbital states.

p shell d shell

Material z1 z2 z3 z1 z2 z3

Al 6.2692 1.5345 6.8611
P 3.7924 1.4540 4.4142
Ga 6.3847 1.5446 6.8190 4.3864 1.9159 1.4369
As 4.6614 1.5002 4.6614 73.5331 2.2475 1.2876
In 7.2687 1.6185 7.2687 6.7272 2.1900 1.8123
Sb 5.4336 1.5415 5.2224 30.6479 2.4120 1.6395

where C is a normalization constant such that βnl(K)/K
approaches unity in the limit K goes to zero, and n is the
principal quantum number for the core shell being considered.
The radial part of the core wave functions, Rnl , was taken from
Herman and Skillman tables73 only for the outermost p and
d shells(when applicable). For Ga, In, As, and Sb, terms up
to l = 2 in Eq. (A7) are considered. Since Al and P do not
have valence d shells, the l = 2 term (d states) is not included
for them. The μl’s are adjustable parameters which is listed
in Table III along with the adjustable parameters for the form
factors.

For all atomic species of interest, the overlap integral
βnl(K) is numerically calculated using Simpson’s method as
a function of K . This integral can be fit to a curve of the type

β ′
nl(K) ≈ z1K

z2 exp(−z3K), (A13)

where zi’s are fitting parameters. Using this pre-evaluated
form [Eq. (A13)], instead of explicitly calculating the integral
in Eq. (A12) at each K , saves a tremendous amount of
computational time while giving exactly the same result (to
within roundoff error). These fit coefficients in Eq. (A13), zi ,
are listed in Table IV for the outermost p and d shells.

For calculating the WZ band structures, the matrix elements
of the pseudopotential Hamiltonian need to be obtained in
WZ’s plane wave basis states. These plane wave basis states
are constructed by considering all possible linear combinations
of the primitive reciprocal lattice vectors G = n1b1 + n2b2 +
n3b3 within a cutoff |G| (where n1,2,3 are integers and b1,2,3 are
reciprocal lattice vectors for WZ). The cutoff |G| is increased
until the eigenvalues converge. As compared to ZB, roughly
about twice as many plane wave basis states are required for
WZ as its primitive unit cell has twice as many atoms as ZB’s
unit cell.

The calculated electronic and optical properties can no-
ticeably vary depending on the lattice constants. For all our
band structure calculations, we assumed an ideal WZ crystal
whose lattice constant is related to its ZB counterpart by aWZ =
aZB/

√
2 and u = 3/8. The lattice constants used for our cal-

culations are listed in Table III. Relatively little is known about
the structure of non-nitride WZ III-V semiconductors. Mea-
surements of bulk samples of metastable WZ GaAs give u =
0.3693,21 while InAs nanowires have an ideal WZ structure
with u = 0.37502.74 The scarcity of data for non-nitride III-
Vs, and the fact that the one structural measurement in an actual
nanowire indicates the ideal structure supports the assumption
of an ideal WZ crystal until better data becomes available.

One may also use lattice constants calculated using first
principle methods. However, we wish to remark that these
lattice constants are often at least as far off from the actual
experimental values as the ideal lattice constants are. For
example in the case of WZ-GaN, the ideal lattice constants
(a = 3.196 Å and c = 5.219 Å) are off by less than 0.5%
(averaged error) from experiment (a = 3.188 Å and c =
5.185 Å), whereas the variouslocal-density-approximation–
density-functional-theory (LDA-DFT) lattice constants listed
in Refs. 75 and 76 vary between 0.65% to as much as
3%—which is further off from experiment than the ideal lattice
constants are.
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