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A plasma is considered in which a Maxwellian distribution of electrons with thermal velocity v, and
drift velocity vp is drifting relative to a Maxwellian distribution of ions with thermal velocity ;.
For up < v. the usual ion acoustic waves are stable, however, electrostatic ion cyclotron waves with
» o2 € are unstable for vp = 5v:. In the case when 5v; S wp < w,, and To/T; < 2 the electrostatic
ion cyclotron waves grow to a nonlinear equilibrium spectrum. This spectrum of waves leads to a
diffusion of electrons across the field lines with a diffusion coefficient D = op?,Q,, where p, is the
electron Larmor radius and Q. is the electron Larmor frequency. «, the ratio of the resulting diffusion
coefficient to the Bohm diffusion coefficient, is given by a constant X (vp/v.)(T./T;).

1. INTRODUCTION

T is well known that a fluctuating electric field
in a plasma leads to a diffusion of the particles

across the magnetic field, and this is called anomalous
diffusion to distinguish it from the usual collisional
diffusion. This diffusion can be divided info two
classes which depend on the character of the fluc-
tuating electric fields. We denote the kth Fourier
space component of the electric field by Ey =
¢ |Ex] exp [i¢x(t)], where ¢ is a unit vector in the
direction of polarization. In one case the electric
field is characterized by a phase ¢x{f) which is a
statistical function of time and as discussed by
Spitzer' the diffusion coefficient depends on the
correlation time of the electric field fluctuations.
In the second case the electric field is made up
of a superposition of coherent waves and ¢ (f) =
—wxt + ¢, where ¢, is independent of time.
In this case the diffusion arises from a resonance
of particles and waves which move along the field
lines with the same velocity.

It has been shown®® that in the nonlinear limit
certain types of microinstabilities lead to the
establishment of an equilibrium electric fluctuation
spectrum which is a superposition of coherent waves.
It is thus possible to determine the anomalous dif-
fusion arising from these microinstabilities by direct
caleulation and it is the purpose of this paper to
do this for the case of a particularly strong insta-
bility—the two-stream ion-cyclotron instability.
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In Sec. IT we develop the linearized theory of
the two-stream ion-cyclotron instability; the non-

linear theory of this instability is discussed in

Sec. III. The diffusion due to the nonlinear equilib-~
rium spectrum is caleulated in Sec. IV and the
results are discussed in Sec. V.

II. LINEARIZED THEORY

We counsider a homogeneous infinite collisionless
plasma in which the ions and electrons each have
a Maxwellian distribution at a characteristic tem-
perature with the center of the Maxwellians dis-
placed by a drift velocity v, and we restrict ourselves
to the case of T, = T, and 8 = 8mKT/B* « 1.
(Here T, and T; are the electron and ion tempera-
tures respectively, n is the particle density, B is
the magnetic field strength, and the drift velocity
is along the magnetic field.) The usual theory of
the two-stream instability, which considers only
waves propagating parallel to the magnetic field,
would predict stability until the electron drift
velocity becomes comparable to the electron thermal
velocity. Only in situations where 7, > T, does
the critical velocity approach the ion thermal
velocity. In the following we point out that for a
collisionless plasma instability occurs at a much
lower velocity for electrostatic waves near the ion
cyclotron frequency and propagating at large angles
to the field.

We will work in the frame where the ions are at
rest and consider modes of the form exp (tk-r — wi).
If v, = 0 the plasma is evidently stable. We would
therefore expect that instability could only oceur
if kywp > w where «, is the wave frequency and k,
the wavenumber parallel to the field. This is the
condition that the peak of electron distribution be
moving slightly faster than the wave—the usual
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condition for being able to put energy into the wave.

In this case if we put w = Q,, the ion-cyclotron
frequency, and v; < vp < v,, the case we wish
to discuss, we obtain the condition kp; = 1, where
v, and v; are the electron and ion thermal velocltles
respectively and p; = v,/Q; is the ion Larmor radius.
The significance of this is that we can show that
for such k and low S8 only pure electrostatic waves
are possible. Thus if we write down the dispersion
matrix obtained from V xV xE + E = —4rjin
a coordinate system in which one of the axes is
parallel to %, determining j from the Boltzmann

equation, we find the dispersion matrix has the
following structure:
2k — (o) (012) (03)
() ke~ () (azs) =0, (1)
(eta1) (ets2) —’ (o)

where the quantities (a;;) arise from the plasma
currents and are all of order «’/(kAp)®, Where
Ap,: = Uui/Wp.;. We note that for K > o,

w*/(k\p)*, the only possible root is &’ = (o), the
pure electrostatic mode in which E || k If we put
w = Q, k= Q/v, then (k\p)* = 32/41rnm K1
and R (F\2) /" = B /4rnma? = 1/8 > 1. Thus
we need only consider pure electrostatic modes.

For this case the dispersion relation, which is
worked out in the Appendix, is

(k)
i=zi-,;e ; (]CAD,')2
. W("w + by + nQi) _ ng;
k"ﬂvi —w + kUui + ngi

Wi
Here T; is temperature, u; the drift velocity of
the j species, TI'\(z) = e ° I.(), I. is the usual
Bessel function of imaginary argument, and

* exp (3y")
W) = —1 +(27r>*fm )y,

The contour of the integral may be taken along
the real axis for z in the lower half-plane (growing
waves). Limiting forms are given by

~ —1 + i)k, | €1,
V &1/, lz] > 1.

For all real z, Im (W) = i(3m)'x exp (—32°). The
limiting form given for large z is not valid for
highly damped waves which are of no concern here.

3
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Since we are concerned with wavelengths com-
parable to the ion-gyroradius k,p, < 1; Ty, = 1;
Thxo,. = 0. Moreover we see thai since vp/v, K 1
the argument of the electron W function is very
small. Since we are concerned with a wave nearly
at resonance with the ion-gyrofrequency we may
neglect all the ion terms except n = 1. This gives us

[ e
+%r,{w(

—w + Qi)
kyw;
Q; o+ Q
+ - & I:l + W( kyw, ):I}’ ®)
where we have neglected (k\p,)* << 1.

We may obtain an approximate solution by noting
that a condition for solution is a large argument
for the ion W function as otherwise the large imagi-
nary part (ion cyclotron damping) will give a damped
solution.

If

I("’ - Qi)/khvi] >1, (6
we have simply

_ T, _Ar %(:9_4‘&@)]
w — Q T I= |:1 l<2> kum ! (7)

el (2 2]
Qi Ti Pl[l + ¢ 2 kﬂve + v, )

Here we have chosen k; positive as the direction
of propagation for instability and used w =

We note that T, has a very flat maximum at
kIR} == 1.5 attaining there a value 0.22.

We conclude therefore that the maximum growth
rate is given by

v = 0.3(T,/T,) QUws/v.)

oceurring for k R} = 1.5 and &, > Q,/vp.
Moreover from Eq. (6) we must have

w'—Q,-

i

8

0= & o0 %

k“U, 02 T k“l} > 1
and also 2/kpw, < vp/v,, 80 that a rough criterion
for instability is given as

VD/U.' > 5.

To refine the stability criterion we return to
Eq. (5) and look for a critical value of v, which will
lead to real frequency w. The imaginary part of
Eq. (5) then becomes
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(&)

ko T ;}: + P I‘x k €XP { =3l — Q) /kp]} =0
(92)

and the real part
(Te/Ti)Fl[Qi/(w - Q:)] = (Qb)

Substituting (9b) into (9a) we have
% _ 7, )[w*-ﬂ,-?_)i T, w — Q
7, (1 + T,’ P‘ kn?),' Ve P)T, +

iCuU.'
Hw — 2)/kp. T}

- exp {...

The minimum comes for

;(«: ¥ )2“{ ~n% o Ly
2\ kws /T v, T, T 2 .,
or
Q ( m,)§ i
— i P ,
k;ﬂ)i ./ T,T,

and the critical drift is then

7)1) ( T

nr,

This formula is not reliable for 7, much greater
than 7';, as then higher n values must be considered
in Eq. (9b). Nonetheless one can see by inspection
that as T./T; decreases, the root moves closer to
9, and the critical drift increases. Conversely as
T,/T, increases, the critical drift decreases.

It would appear then that this instability near
the ion-eyclotron frequeney reduces the value of
vp/v, necessary for instability by about an order
of magnitude in the case of equal temperatures as
compared to previous theories which consider only

= {.

) T

3

(10)

111, NONLINEARIZED THEQRY

From the derivation it is clear that the dispersion
relation (w — @.)/% = I{T./T.) is insensitive to
small changes in the distribution function while the
growth rate depends critically on the distribution
function. In particular, for a more general electron
distribution, the growth rate v is given by

6g} .
po= T 11
7 0y Joyewrm (D
where
g= [N, aN, do,
a = 20,T(T,/T)(m/n).
In order to apply the nonlinear theory® it is

required that the growth rate in the linearized
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theory be proportional to dg/dv, and v, /we << 1.
In addition, the dispersion relation must be such
that wx + wg # wisq The ion-cyclotron instability
considered in Sec. II satisfies all these necessary
conditions.

In the nonlinear theory fo(v) is replaced by a
slowly varying function f(v, #) for which f(v, 0) =
fo(¥), and {(v, {) varies in time according to

QJ%L) - (fi) ; E i+ Vifs.

Inserting fi(v) from Eq. (A2) of the Appendix we
obtain

4= (2f Y BV,

(12)

at
‘ sm(q&——@)a E, ﬁ]
[E Q, + (s + tkywy) dy fv, 9

ey — -2 K
m) ; [E‘L €08 <¢ 9) 3?)4\ + E“ av;t]

- sin (¢ — 8 6‘ E
[E'L Q, + (S + ’I,R]C ﬂ)n) ov ]f(v t) (13)

where 4 is the azimuthal angle of k and

. ky
s = s = =i g o) + 1(6).

Integrating over ¢ we obtain

gﬁ ( ) Z, ma’f‘a(s'%“@kpv)év ff ¢

and therefore,

T
at Zi @) av, {s 4 tkpy) ov,

Replacing 3., by L/2r | dk; we have, since
|E\(k)° and the real part of 1/(s, + ikywy) are
even functions of %k, and the imaginary part of
1/(sx -+ dkyy) is an odd function of (k,)

(e &t

(sk + zk vﬁ)

=( )2” [ B, ) s ( -‘~”;)

2 2
- () E e
I vy
(15)

Denoting Ey(k,, wx/v,) by Ey(k,, »,) the equations
of motion become

@ zE{k‘L; @';g) ia

ot

(14)

=alBPE, g
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Fic. 1. Plot of initial velocity distribution along the mag-
netic field go(v) and the final velocity distribution g.(v).

aglv, ) _ 9 (i)z L 3 Bk, v) (%)2 %}% (17

af dv\m/ v ¥x1

As discussed in Sec. II, v has a broad maximum
near k, = k,, =2 1.5Q,/v; and this leads, after many
e-folding times, to a very sharp resonance of
|E(k,, v,)|° near k, = k,,. Making use of this and

we can sum Egs. (16) and (17) over k, to obtain

9&()) /0t = ay8(vy) 9g/dvy, (18
% = b%ﬁg(vn) %:;l 3 (19)
where
&) = g |Ek.,v)f, o, = alk,,)
1 L HOAY
-5 250 @

The temporal behavior of the unstable waves
can be described as follows.” At ¢ = 0 the electric
fluctuations are assumed to consist of random noise,
and initially those waves with 0 < wy/ky < vp
grow with the linearized growth rate,* and the
spectrum is very peaked about the fastest growing
waves. After &(kyv,) has grown to a sufficient
amplitude the distribution function begins to diffuse
according to Eq. (19). This tends to flatten the
distribution function at the velocity corresponding
to the fastest growing wave, and consequently to
steepen the distribution function on either side of
this point. This in turn increases the growth rate
of those waves on either side of the fastest growing
wave while decreasing the growth rate of the fastest

4 Actually there is a lower limit, 2, such that waves with
wr/ky < vo do not grow. However v, is small compared to
vp if vp is substantially greater than the critical value for
instability and we thus neglect vy compared to vp.
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growing wave. Thus as the distribution function
diffuses the spectrum of waves spreads.
As discussed in reference 2, the asymptotic result is

llm g(?)", t) = o fOI‘ 0 < 4 < U1y

= g») for v, <0, (21)

where g. is a constant and together with », is de-
termined by

vy > V1,

/ " g ~ 0] = 0, 22)

Jo = Golvy),
and

0o = [ 1ou do d.

The accompanying equilibrium spectrum of waves

is given by
60) =5 [ loo — 0N (29
The asymptotic distribution function and the

equilibrium wave spectrum are illustrated in Figs.
1 and 2.

IV. DIFFUSION COEFFICIENT

The equilibrium spectrum of fluctuations gives
rise to a diffusion of particles across the field lines
and as will be shown this is a result of a resonance
between particle and wave velocities of the type
which leads to the velocity diffusion given by Eq.
(19). This relation can be exploited to give a heuristic
derivation of the diffusion coefficient.

It is well known that for sufficiently slowly varying
fields the drift velocity across the field is

dr _ E()xB _ B,

dt ~ B? B
and
Dit = (A = <(%)( fo B dt’)2>, 24)
5m(v)

F16. 2. Equilibrium spectrum of plasma waves as a function
of their phase velocity, ».
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where D, is the spatial diffusion coeflicient perpen-
dicular to the field lines, and ( ) indicates an en-
semble average. Similarly the diffusion of particles
in velocity space is determined by

dv,/dt = (e/m)E,(D)

and

Dt = (&)%) = (%)« f ' E() dt’)2> (25)

Making use of the fact that E/Ey = k./ky = v/v,,

U B )
(T 5000))
- #(2) L.

Now D, =2 (Ar,)’/r when we expect (Av,) to be of
the order of v, and 1/7 to be of the order of 7.
Thus D, « vy and thus (taking v &£ vp)

D, « g (T./T)bo/v.)". @7

Since only those electrons with 0 < » < »p can
resonate with the plasma waves only these electrons
diffuse. Since these represent only a fraction of
the order of vp/v, of the total number of electrons
the average diffusion coefficient goes more nearly as
(vp/v.)%. Thus we are able to obtain the depend-
ence of D, on the parameters in a simple way and
we note that D, « p’Q; = Djp, the Bohm diffusion
coefficient.

A more rigorous derivation of this result which
also determines the coefficient of proportionality
is given below. For electric fields varying slowly
compared to the electron cyclotron frequency the
electrons drift across the magnetic field with a
velocity v; = ¢E,/B and thus

D,

fi

(26)

=g z fo "B, exp (ik-r)
+ eXp [’i(k“’vn b w;,)t] dt
= % 2 B.(k) exp (ko)

Jexp Llp, —wt] — 1
w(lew, — W) ’

(28)
and

G = () 5 oy iz edll o
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where { ) denotes an average over the initial phases
and we have assumed that (O, EyBy.) = |Exl’
For large ¢ the function

{sin (ke ~ witl/3(kwy ~ wk)}2

is sharply peaked about kw, — w, = 0 and

S s L2 f dk,
k
can be evaluated by taking advantage of this to give

(rd) = 2e/BNLeWt, D, = 2(c/B)(L/n)&0).
(30)
‘We see here that only those terms for which &y, = o,
lead to time proportional diffusion and thus it is a
resonance between particle and phase velocities

which leads to diffusion.
Inserting &..(v) from Eq. (23) we have

D, = 8.9:r( L) () [ (22—
, = .rrgﬁ . f " dv. (31)

For vp K v,

(32)

_ 3
f Io = o gy o~ A(v—q)
n v,

b 2
o= A5 o

in agreement with our earlier results.

The diffusion of ions is more complicated and is
not considered in the present paper. For a given
physical situation, however, the ion diffusion and
the need for charge neutrality must be included.

and

(33)

V. DISCUSSION

We have shown that this instability near the
ion-cyclotron frequency reduces the critical current
which can be drawn parallel to the field without
producing instability by about an order of magni-
tude in the case of equal temperature as compared
to previous theories which consider only &k, = 0.
This appears to be the explanation of the results
of D’Angelo and co-workers who have observed
instabilities in a cesium plasma and the ecritical
current they observe is in agreement with results
of Sec. II. In addition, the measured frequency of
the unstable oscillations was w =% 1.20;, also in
agreement. Nonetheless, this explanation is not
completely satisfactory since in the experiment,
Qi7eonn = 10 where 7.,: is the ion—ion collision
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time and in view of the low predicted growth rates
it is difficult to see why collisional damping would
not dominate.

The diffusion coefficient obtained is small com-
pared to the “Bohm diffusion coefficient”, p,Q,
although it has the same dependence on magnetic
field, ie., D <« 1/B. Indeed for the stellarator
vp/v, << 1 while the experimental result is D,, =
0°Q,, and it thus appears that “pumpout’ is not
due to this type of instability, at least in its simplest
form. There is, however, the possibility that the
particle collisions couple the external electric field
(which produces the drift) to the fluctuations,
leading to a much higher fluctuation amplitude. To
answer this question, however, one must solve the
nonlinear Fokker-Planck equation.

In the absence of such an external source of energy
it seems unlikely that any microinstabilities for
which v/w « 1 will produce large macroscopic
diffusion for the simple reason that the energy fed
into electric fluctuations is small, i.e., or order v/w.
For the case at hand, it is a fortior: small since, as
remarked in Appendix A, only the fraction (kL,)’<1
of the energy given up by the electrons goes into
electric field, the bulk of the energy going into ion
kinetic energy.
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APPENDIX A

We consider an infinite homogeneous plasma with
a magnetic field B in the direction of the z axis.
As discussed by many authors, e.g., Bernstein,® the
perturbed electron distribution function is given in
the linearized theory by

z

—3
8
., _—
k " ! Fra. 3. Coordi-
A nate system show-
Vo ing the components
| y of the veloeity.
N v
\ YL :
$ AN
N
A\

X

5 I. B. Bernstein, Phys. Rev. 109, 10 (1958).
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fr = 7‘; > T exp (ing — i\, sin ¢)

Gl
s+ ik +iln + 1O

+ ¢ ]i
s+ ey +in — 1)Q] o,

EH
+ s + 7,]h”1)H E) }fO(DJ.;vH); (Al)
where J, is the usual Bessel function, s = —1w

and A, = (kyp.). For ke; 22 1, s = —40Q, we have
A, K1, 8 4 tkwy < 18, for all but the fastest elec-

trons and we can neglect all terms but n = 0 to
obtain
_e[E. . @ E, ]
fk m [Qe sin ¢ + (3 + 'LIL|U|]) (91) fO(l-L UU)
(A2)
The electronic charge density is given by
®  9g,/dv,
= — dvf, = — Ol g :
Pr, ef vfi = E, o (5 + k) dv; (A3)

where g, = [ fo(W)v, dv, d¢.
Similarly the perturbed ion distribution function
is given by

F, = Z J(—N) exp (ing + i\, sin ¢)

n=—

{l[
(s + k) —iln + 1O,

e :l_a_
(8 + thpy) —in — DQ, | v,

E, i}
G by — g a7 (A44)
Taking Fy(v,, v) to be a Maxwellian yields
Py = Ek w,,, Z I (’\/Lp)] { ( w)
n=—c by,
nQ _is+nQ
+ 18 — nQ [1 + W( k”m )]}7 (A5)

where T, is defined in Sec. II.

If the particles have a drift velocity v,, we must
replace s by s 4 ikwy,. Thus using V-E — kE, =
4r(p,, + piy), and s = —iw, we obtain the dis-
persion relation, Eq. (2).

It is worth noting that only a small fraction,
(kLp,)* < 1, of the energy which is given up by
those electrons in resonance with the waves, i.e.,
those electrons with v, = w/k,, goes into electro-
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static energy, and the bulk of the energy goes into
the kinetic energy of wave motion. This is in contrast
to the case of electron plasma oscillation for which
the energy from resonance particles is evenly divided
between kinetic and potential energy.” To see this
we- note that the energy transfer is proportional
to the ‘“in-phase” part of the current j and that
Jr = —(8/1k)p:. The rate of change of energy is thus

aU al Z [Ekl Z E—k 'jk
k
22 S 5 (@)
- _‘; Bl 4w ,Z (kv,)
_ [T 3 —w + ik“UD)
{ L+ Z(2) ( v,
+ F[(%) J is -sz,- 9} (46)
where

U= Z % m; fv2f,~(v) d

is the kinetic energy of the particles and we have

taken only n = 0 for electrons and n = 1 for ions.
For each k the real part is given by}
). - oo - 52
dt )~ ALy T T A2 Ky,
Q Y., T,
+ ’y(w - Q) = T‘,}
_ _J_E_I{
T am(kLy)t \T T Y ser [+ (Lo
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T,
+ I‘l, T. (1+ (kLoe)2]2}, (A7)
where we have evaluated v and o from Eq. (2)
without neglecting (kL,.)? < 1.

(w — Q,-) _ T r,
Q /T4 (kLy)??

v = T Gy ) ()

The first term in the curly brackets in Eq. (A7)
comes from the bulk of the electrons and represents
the energy fed into the electron kinetic energy of
the waves. The second term comes from the resonant
electrons and represents the energy drawn from
these particles. The third term is the energy fed
into the ion kinetic energy of the wave. Note that
the terms from the resonant electrons and from the
ions are both larger by a factor of 1/T, than the
electron kinetic energy term and their difference is
—v[1 4 (kLp.)*]. Thus the total change in particle
energy is just

)
dt /x

(A8)

_ Bl o B
4 dt 8w

We may describe this as follows. The resonant
electrons give up energy to the waves at a rate of
order v/T,(kLp,)*. The waves in turn feed energy
into the ions at a rate of v/TI',(kLp.)* and into the
bulk of the electrons at a rate of order vy/(kLy.)*.
The net rate of electrostatic energy change is, how-
ever, of order v « v/(kLp,)’. Thus the ion-cyclotron
waves have only the fraction (kLp,)*> <« 1 of their
energy as potential energy.

(A9)
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