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Electrodynamic Containment of Charged Particles 
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Electrically charged iron and aluminum particles having diameters of a few microns have been contained 
in a confined region of space by means of alternating and static electric fields. The theory is essentially that 
of alternating gradient focusing; here the motion is governed by Mathieu's equation. Under certain circum­
stances when many particles are confined the three dimensional focusing force and the Coulomb repulsion 
results in a "crystaline" array which can be "melted" and reformed. 

STUDIES in this laboratory on the electrical charging 
in vacuum of small dust particles resulted in the 

development of a method of containing these particles 
in dynamic equilibrium by alternating electric fields. 1,2 

This new technique is based upon the strong focusing 
principle which has as its analogue the classical problem 
of the upside-down pendulum. Essentially this device 
can be thought of as a closed form of W. Paul's and 
M. Raether's electric mass filter.3 The new variation can 
be employed to suspend any charged particle (e.g., 
charged dust, ions, electrons, etc.) in dynamic 
equilibrium.4 

The necessary condition for the proper operation of 
this type of suspension system depends upon finding 
electrode configurations which give sinusoidally time 
varying forces whose strengths are proportional to the 
distance from a central origin. Under this condition, 
the differential equation of particle motion is a special 
case of the Mathieu differential equation. A three 
dimensional electrical configuration which satisfies this 
requirement is the circularly symmetric potential 
dis tribu tion 

(1) 

where Vac is the peak value of the alternating signal of 
angular frequency Q applied in series with the constant 
voltage V dc. Differentiation shows that the field 
intensities have the required space dependence and are 

and 

z 
Ez=2(- Vdc+ Vac cosW)­

Z02 

r 
Er= - (- Vdc+ Vac cosQt)-. 

Z02 

(2) 

(3) 
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t A division of Thompson-Ramo-Wooldridge Company. 
1 Shelton, Wuerker, and Langmuir, Bull. Am. Phys. Soc. Ser. 

II, 2, 375 (1957). 
2 H. C. Corben, Bull. Am. Phys. Soc. Ser. II, 2, 375 (1957). 
3 W. Paul and M. Raether, Z. Physik 140, 262-273 (1955). 
4 It is understood that Professor W. Paul has independently 

been conrlucting similar experiments on the containment of 
atomic particles (unpublished). 

The negative 2: 1 ratio between the vanatlOn with 
distance of fields in the two directions shows that when 
the electric field is focusing toward the origin in the z 
direction then it must be defocusing in the r direction 
and vice versa. 

The differential equations of a motion of particle of 
charge-to-mass ratio elm in this potential field are 

rPz (e) (2VdC) (e) (2Vac) -=- - -- z+ - -- zcosQt, 
df m Z02 m zo2 

(4) 

and 

d2r (e ) (VdC) (e ) (Vac) -. =+ - - r- - - rcosQt. 
dt- m Z02 m zo2 

(5) 

The equations of motion of a single particle in the two 
directions of space are seen to be identical except for the 
negative 2: 1 ratio between the constants. Equation (4) 
is a function of z only while (5) is a function of r only. 
The motions in z aild r are therefore mutually in­
dependent. Each of the above equations is thus a 
special case of the Mathieu differential equation which 
in its general form is usually written 

rPu 
-+(a-2q cos2x)u=O 
dx?-

(6) 

in which u may represent either z or r. The dimension­
less constants in the above equation are related to those 
of the present physical problem through the trans­
formation equations 

x=QtI2, (7) 

(8) 

and 

(9) 

Clearly motion with negative q is the same as with 
positive q except for a change of phase of the drive. 
Physically the Mathieu differential equation demon­
strates that when the alternating driving force 2q 
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vanishes the particle will oscillate with a natural 
harmonic motion of frequency equal to (a)t. 

The Mathieu Eq. (6) is solvable in an infinite series 

00 00 

u=Ae''' L C2nEi2n"+BE-I''' L C2nE-i2n" (10) 
n=-OO _00 

in which the quantities f.L and C2n are functions of the 
parameters a and q. The exponent f.L in the above 
equation is all important in that it determines the two 
different types of solutions. Thus if f.L is either a real or 
complex number the amplitude builds up exponentially 
and the particle is not stably bound. If on the other 
hand f.L=i{j the motion is bounded and the particle 
remains in dynamic equilibrium. For stable contain­
ment the quantity {jx is related to the frequency of the 
dominant term in the series solution, and, as pointed 
out earlier, it is equal to (a)t when q is zero. Thus, for 
the present physical problem {jx is related to the funda­
mental frequency of particle motion in the two orthog­
onal directions w.={j.xlt and wr={jrxlt. Using the 
transformation Eq. (7) between the normalized in­
dependent variable (x) and time (t) gives the funda­
mental frequencies in the two directions as a function 
of their respective {j's and the driving frequency Q, 

i.e., w.={j.Q/2 and W r={jrQ/2. Accordingly fJ or its 
implied w will be referred to as the "resultant frequency 
of motion." 

It can be shown that the particle will be stably 
bound if the values of a and q are within the region 
bounded by the curves 

(corresponding to the special case of (j=0), and 

1 1 1 11 
a=l-q--q2+-t--q4---qfi+ (12) 

8 64 1536 35864 

(corresponding to {j= 1).6 
The question of the range of a-q values necessary for 

the stable confinement of a particle in three dimensions 
can be represented by plotting Eqs. (11) and (12) for 
the ,. and z direction of the cylindrical coordinate 
system on a single Cartesian graph. Figure 1 shows the 
resulting "necktie" stability plot for the axially sym­
metric potential distribution of Eq. (1). The stable 
a., ar, q., and qr values are contained within the solid 
boundary curves (corresponding to (jr=O, f3r= 1, 
fJ.=O, and fJ.= 1) which have been drawn through the 
theoretical values.6 The points and curves within the 

'N. W. McLachlan, Theory and Applications of Mathieu 
Functions (Oxford Universitr Press, New York, 1947). 

S The values for Eqs. (11) and (12) were taken from published 
tables. Computation Laboratory, U. S. Bureau of Standards, 
Tables Relating to Mathieu Function (Columbia University Press, 
New York, 1951). 
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FIG. 1. Normalized stability diagram for the axially symmetric 
electrodynamic suspension system. The solid line passes through 
the theoretical values. The three curves within the region of 
stability are the experimentally determined loci along which the 
resultant motions are, respectively, in the following ratios 
fJ./fJr=2, 1, and ;. The probable error is indicated by the size of 
the circles. 

region of stable operation represent experimentally 
determined values which will be fully described later. 

Operation of the present system is specified in a-q 
space by a straight line intercepting the origin and of 
slope 

al q= 2 Vdcl Vac. (13) 

That is to say, for given applied voltages Vdc and Vac 
this operational line determines the range of driVIng 
frequency Q through which a particle of given elm 
will be stably bound. Conversely if the frequency is 
also held constant the al q operational line specifies the 
range of elm values which will be accepted (i.e., 
higher elm particles correspond to higher q values). 
Thus it can be seen that by properly adjusting the 
ratio of the two voltages so that the operational line 
just passes one of the edges of the stability curve the 
elm acceptance of the chamber can be made quite 
narrow. It is with a similar operation that Professor 
W. Paul made his channel device into a sensitive mass 
spectrometer.3 

When no direct voltage is added in series with the 
drive the operation of the system is specified along the 
abscissa (a=O) of Fig. 1. Solution of Eq. (12) for a=O 
shows that the maximum value of q for stability is 
qma" = 0.908; hence the minimum applied driving fre­
quency according to Eq. (9) is 

Q. min = 1.484[ (~) (2:200) r (14) 

The evaluation of this expression for the specific case 
of 2Vaolz02= 1000 v/cm2 is presented in Table I in order 
to illustrate range of frequencies encountered with 
particles of different charge-to-mass ratios. The theory 
further predicts the existence of other narrow regions 
of bounded operation, corresponding to values of f3> 1, 
but to date the existence of these higher modes has not 
been experimentally verified. 
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TABLE 1. 

(2 V.d.,' = 1000 ./em') 

elm 
coulombs/ 

Particle kilogram 

Electron l.76X1011 

Proton 9.6X107 

Uranium 238 4.0SX105 

20-1' diam aluminum particle carrying 
0.35 million units of elementary 
charge, and thus charged to 51 v 0.005 

i=flmi,,/2 .. 
CY/sec 

313 Mc 

7.31 Mc 

478 Kc 

S3 cy/sec 

The preceding paragraphs have summarized some 
of the mathematical methods and salient results 
obtained from Mathieu equation theory. As with many 
such nonlinear problems, physical intuition is easily 
lost in the mathematical manipulations. A simplified 
approximate solution when {3 and q are small has been 
found which helps one more easily to comprehend the 
physical principles governing the operation of the 
electrodynamic suspension system. Referring again to 
Eq. (6) we assume that the particle position as repre­
sented by z can be separated into two components 

z=Z+o (15) 

such that 0, the smaller component, is a displacement 
of small amplitude governed by the periodically 
varying applied driving force 2q, while Z describes the 
average value of the displacement over a complete 
period of the drive. Z will change much more slowly, 
but with a larger amplitude than 0, and its values define 
the resultant motion. Thus the solution, when stable, 
will consist of a slow vibration upon which is super­
imposed a smaller ripple due to the drive. Substitution 
of Eq. (15) into the Mathieu equation enables one to 
effect a simplification under the assumption that 
0<<Z, but do/dt»dZ/dt 

rPo 
-= - (a-2q cos2x)Z. 
dx2 

(16) 

If a«q the above equation is easily integrated under the 
assumed relative constancy of Z 

qZ 
0= --(cos2x) 

2 
(17) 

demonstrating that when the particle is stably bound 
the micromotion is 1800 out of phase with the drive. 
Substitution of Eqs. (17) and (15) back into the original 
differential equation gives 

d2z aqZ 
-= -aZ+- cos2x+2qZ cOS2X-q2Z cos22x. (18) 
dx2 2 

The resultant acceleration, d2Z/dx2, is found by averag-

ing the il.1stantaneous acceleration over a cycle of the 
drive 

d
2

Z = d
2

z =~f" d
2

z dx= _ (a+ q2)Z. 
dx2 dx2 7r 0 dx2 2 

(19) 

Under the assumed approximations, the apparent 
motion has been reduced to a differential equation of 
harmonic motion, and our approximate theory shows 
that the particle will vibrate stably with a resultant 
dimensionless frequency of motion of 

(20) 

In the special case of a= 0 the particle will vibrate in 
the potential field of Eq. (1) with resultant frequency 
of motion of 

(e) (Va") (l)radians wz={3zfJ/2=-./'l - - ---
m Z02 n second 

(21) 

and 

1 (~) (V 00) (l)radians wr ={3,n/2=- - - - --. 
-./'l m Z02 n second 

(22) 

These approximations are valid when q;S0.4. The 2: 1 
ratio between the two frequencies of resultant motion 
correspond to the 2: 1 ratio between the electric field 
strengths in the two orthogonal directions. In the 
absence of series dc voltage and for small values of q 
the particle is expected to vibrate in a characteristic 
2: 1 Lissajous pattern. 

The addition of direct voltage in series with the drive 
strengthens the effective binding in one direction at the 
expense of the other with the result that the resultant 
vibrational frequencies will be correspondingly altered. 
For example, the application of a series voltage which 
results in a force toward the axis along the r direction 
acts to make up for the inherent geometrical weakness 
in this direction. Thus it is expected that the proper 
addition of a series voltage can cause the particle to 
vibrate with equal resultant motions in both directions 
(i.e., wz=wr), and the trajectory will have the over-all 
appearance of a 1: 1 or circular Lissajous pattern. 
The approximate theory shows that this condition will 
occur when az= - qz2/4. A further increase in r focusing 
will increase the resultant frequency of motion in the r 
direction while decreasing the resultant frequency in 
the z direction, and one finds a condition in which 
the particle will vibrate on the average twice as fast 
in tht:. r direction as in the z direction (i.e., wr = 2wz). 

The particle trajectory then will have the appearance 
of a 1: 2 Lissajous pattern. The approximate theory 
shows that this condition will occur when az = -5qlj12. 
Further increase in r focusing will eventually cause the 
static field to exactly cancel out the binding effect of 
the driving frequency in the z direction (i.e., w.=O). 
On setting {3=0 in Eq. (20) it is seen, referring back 
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to Eq. (11), that the approximate analysis has given 
the first term in the expression for the lower boundary 
of stability. 

We have seen that the electrodynamic suspension 
system is able to compete against anharmonic forces 
(corresponding to negative values of a) and still 
maintain a particle in equilibrium. The case of uniform 
forces such as gravity or constant electric fields will 
now be considered. Such forces modify the original 
Mathieu differential equation giving 

d2z 
-+(a-2q cos2x)z=A 
dx2 

(23) 

where A, the normalized constant force, is related to 
the physical problem by 

(24) 

the physical force being represented by F. The complete 
solution of this differential equation is the sum of the 
particular integral corresponding to A and the comple­
mentary function [Eq. (10)]. However, by using the 
approximate solution outlined in the previous para­
graphs one is able to obtain an approximate expression 
for the particular integral in closed form; namely 

d2Z ( q2) -+ a+- Z=A. 
dx2 2 

(25) 

The normalized solution of this equation is 

(26) 

It may be seen that the uniform force displaces the 
center of motion by an amount proportional to its 
magnitude and inversely proportional to the square 
of the resultant frequency of motion. In the present 

POWDER 
INJECTION 
PULSE 

FIG. 2. Schematic diagram of the electrodynamic 
suspension system. 

FIG. 3. Photograph of the experimental electrodynamic 
suspension system. 

physical problem this displacement is 

A=F/tnwz
2

• (27) 

If this displacement is equal to the dimensions of the 
apparatus establishing the potential field, the particle 
is lost. For example if the force is due to gravity the 
particle can "fall out" when the resultant frequency of 
motion becomes too small. Gravity will accordingly 
slightly alter the appearance of the lower stability 
curves of Fig. 1. 

EXPERIMENTAL ELECTRODYNAMIC SUSPENSION 
APPARATUS 

A small experimental chamber which gave the 
required potential distribution was machined out of 
aluminum. This, in turn, was mounted above an electric 
powder injector, and the whole apparatus was mounted 
within a vacuum envelope. Figure 2 shows schematically 
the complete apparatus with the electrical circuit 
through which the driving voltage (Vae), the series 
voltage (Vde), and the "uniform" voltage V g are applied 
to the trapping chamber. As can be seen, the driving 
signal is applied between the end caps and the annular 
ring by a variable dc voltage and ac audiogenerator. 
In addition, means were provided for applying an 
alternating voltage V/l across the end caps for the 
purpose of experimentally measuring the resultant 
frequency of motion in the z direction. As shown, ports 
were drilled in the caps and the ring electrode for the 
purpose of microscopically examining the interior, 
introducing the dust particles, the particle charging 
current, and the carbon arc illumination. Figure 3 
shows a photograph of the apparatus as it is mounted 
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FIG. 4. Photograph of the complete apparatus for studying the 
electrodynamic suspension of charged dust particles. 

upon the vacuum face plate. These components are 
contained in turn within a brass vacuum envelope 
which mounts the microscope tubes, the illumination 
port, and the charging gun. (See Fig. 4.) 

The experimental operation of the suspension system 
is as follows: first the chamber is evacuated to a 
pressure less than 20 J.l of Hg, the driving signal is 
applied between the ring and end caps (initially the 
driving frequency is around 150 cy/sec with an ampli­
tude of Vac/v'1 = 500 v rms), the carbon arc illuminator 
is struck, and the charging current is turned on. The 
chamber is then ready to accept the powder which is 

FIG. 5. Retouched microphotograph of the 2: 1 Lissajous 
trajectory in the T - z plane of a single charged particle of alumi­
num dust contained by the electrodynamic suspension system. 
V",,=SOO v rms, Vdc=O, n/2,..=200 cy/sec, and ",./2,..=16.3 
cy /sec. One calculates from these experimentally measured 
values: e/m=0.OOS3 coulombs/kg, a.=O, q.=0.232, and fJ. 
=0.163. 

injected into the interior by pulsing the bucket of the 
injector to ground potential for a few milliseconds 
through a thyratron circuit. Observation perpendicular 
to the axis of the chamber through the horizontal 
microscope enables one to observe visually a contained 
particle which has been charged by the beam and is 
bobbing around the interior of the chamber under the 
confining influence of the alternating electric fields. 
Figure 5 shows a photomicrograph of a charged piece of 
aluminum dust (around 20 J.ldiam) when a/q=0.7 It 
will be noted that the trajectory is a 2: 1 Lissajous 
pattern upon which is superimposed the driving 
frequency. 

As expected from the theoretical analysis, the 
addition of voltage (V g) across the end caps displaces 
the particles either up or down depending upon the 
polarity and sign of charge of the particle. By properly 
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FIG. 6. The normalized resultant frequency of motion 
fJ as function of q when a=O. 

adjusting this voltage gravity can be canceled out, the 
sign of the charge of the particle can be determined and 
the elm ratio can be estimated [using Eq. (27)]. When 
gravity is neutralized the driving frequency can be 
extended to very high values without having the 
particle fall out of the chamber. By applying a small 
alternating voltage (VIl) of approximately 0.1 v rms 
across the end caps using a second oscillator the 
resultant frequency of motion in the z direction can be 
measured by visually observing when the particle 
motion is in resonance with the applied signal. A small 
difference between the two frequencies results in an 
easily observed beat frequency which disappears when 

7 The photomicrographs were taken with a Leitz MIKAS 
3S-mm microscope camera using Kodak Tri-X film. The speed of 
film was increased by developing the negatives with FR X-SOO 
Developer. Exposure times were typically between iol sec. 
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the two are exactly equal. At resonance the orbit elongates 
by an amount determined by the background vacuum 
pressure. Figure 6 shows the experimental measure­
ments of the normalized resultant frequency of z 
motion as a function of the parameter q when Vdc=O 
(i.e., a/ q= 0). These data were obtained by varying 
both the driving frequency and driving voltage. 
Inspection of this graph shows that the approximate 
theory begins to fail by more than 1 % when q;GOA. 

The product of the resultant frequency of motion and 
drive frequency is directly proportional to the product 
of the charge to mass ratio and the gradient of the 
driving field intensity in the z direction in accordance 
with Eq. (20). This simplified relationship enables one 
to measure accurately the charge to mass ratio of the 
particle knowing the driving voltage and chamber 
dimensions. As the driving frequency is progressively 
decreased, the resultant motion speeds up, the ripple 
due to drive becomes more prominent, and finally the 

FIG. 7. Retouched microphotograph of a 1: 1 Lissajous Trajec­
tory in the r-z plane. Vac=500 v rms, 2Vdc= -90.2 v, 0= 148 
cy/sec, and e/m=0.OO625 coulombs/kg. One calculates from 
these experimental values that qz=0.502, az= -0.0643, and 
az/qz= -0.128. 

motion builds up in the z (vertical) direction and the 
particle is thrown out of the chamber. 

Measurement of the frequency of the "upper region 
of stability" gives a third way of estimating the charge 
to mass ratio of the particle using Eq. (14). 

The addition of voltage (Vdc ) in series with the drive 
Vac enables one to explore experimentally the full 
region of stable operation of this suspension system 
as mapped in Fig. 1. Figure 7 shows a microphotograph 
of a single particle trajectory which is like a 1: 1 
Lissajous pattern. Figure 8 shows the 1: 2 Lissajous 
pattern obtained by further increasing the series 
voltage (Vdc). Figure 9 shows the "perverse" trajectory 
down deep within the region of stable operation. 

The experimental points on the boundary curves of 
the stability diagram are plotted in Fig. 1. It was 
possible to measure a point without loss of the charged 
particles by careful manipulation of the voltages and 
frequency and by recognizing when the motion was on 

FIG. 8. Retouched 
microphotograph of a 
1: 2 Lissajous trajectory 
viewed in the y-z plane. 
Vac=500 v rms, 2Vdc 
= -144 volts, 0= 148 
cy /sec, and elm 
=0.00625 coulombs/kg 
gram. One calculates 
from these experimental 
values that qz=0.502, 
az= -0.102, and az/qz 
= -0.204. 

the verge of no longer being stable. Besides experi­
mentally tracing out the region of stable operation, 
one can further determine the loci of points where the 
resultant motions in the two directions are in 2: 1, 1: 1, 
and 1: 2 ratios as seen in Fig. 1. The determination of 
these curves becomes a little difficult for large values 
of q. 

In essence, using single particles, the above apparatus 
can be employed as an analogue computer of the 
Mathieu differential equation. It should be mentioned 
that once a particle is trapped within the chamber it 
stays. Some have been held in suspension for as long 
as a weekend. 

Containment of Many Particles 

Besides verifying the theory concerning the con­
tainment of a single particle the electrodynamic 
suspension system also showed that it could compete 
against interparticle Coulomb forces. Experimentally 
it was found that when the powder was initially 
injected and charged, instead of accepting a single 
particle the chamber filled up with many. This behavior 
in fact was the more usual case. At first the motions 
were quite violent and mixed up; however, on dissi­
pating the initial kinetic energies by increasing the 
background pressure to several microns the particles 
could be made to take up stable arrays. Arrays of more 
particles than could easily be counted have been seen. 

FIG. 9 Retouched micro­
photograph of a single 
particle trajectory viewed 
in the y-z plane deep 
within the region of stable 
operation. Vac=500 v rms 
2Vdc= -269 volts, 0=92.5 
cycles/second, and elm 
=0.00623 coulomb/kg. The 
values of the normalized 
parameters are q,= 1.29, 
az= -0.49, and az/q, 
= -0.38. 
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(a) 

(b) 

(e) 

FIG. lO. Many body suspension viewed in the r-z plane. 
Experimental values: V.c =500 v rms, D=210 cy/sec. (a) Top 
picture: 2Vdc=-30 v, wz =21.7 cy/second; (b) Middle picture: 
2Vdc=0, wz =26.0 cy/sec; (c) Bottom picture: 2Vdc= +24.7 V, 

w,= 29.4 cy/sec. The average charge to mass ratio of a single 
particle was e/m=0.OO765 coulombs/kg. 

In Fig. 10 the effect, as seen in the r- z plane, of the 
series voltage (Vde) on a typically stable array of 
positively charged aluminum particles can be seen. 
Each line corresponds to a single particle which is 
vibrating about its stable position under the influence 
of the alternating field. One notes that on proceeding 
away from the center the amplitude of vibration 
increases. The orientation of the individual particle 
vibrations serves to map out the electric field pattern 
within the chamber. Most interesting is the effect of 
varying either the driving frequency or the driving 
voltage. If the frequency is increased (or conversely 
Vae decreased) the "cloud" of particles expands to a 
new equilibrium. If on the other hand the frequency 
is decreased the array is compressed. As the drive is 
further decreased the array is progressively compressed 
and the individual particle motions get larger. At some 
point (which is a function of the vacuum pressure) 
the static array "melts" and the particles again move 
around in a random fashion in large orbits. If the 
frequency is increased the particles "recrystallize." 
The process of "melting and recrystallization" can 
be repeated over and over again. The time of "re­
crystallization" is a function of the number of particles, 
background pressure, and the amplitude and frequency 
of the drive. If the pressure is quite high (around 
S-10,u) and the frequency also large (q<0.2) the 
recrystallization time will be of the order of seconds. 
If, conversely, the pressure is lowered to around 0.1 Jl 

then the static array may take many minutes to re­
establish itself. 

The array of Fig. 10 is unique due to its symmetry 
(gravity in this case was canceled out by the application 
of V g =20 v). In most cases a wide range of elm is 

TABLE II. 

n~ -- B 
2,,-

cy/sec ~IOO 32 

2lO 0.248 0.229 
200 0.272 0.257 
190 0.305 0.284 
180 0.319 
170 0.390 0.362 
160 0.415 
150 0.530 0.481 
145 
140 melts 

at 143 
cy/sec 0.579 

13S 0.645 
130 melts 

at 131 
cy/sec 

125 

Number of particles 
5 3 

0.220 0.220 
0.247 0.248 
0.275 0.273 
0.309 0.309 
0.347 0.347 
0.400 0.400 
0.465 0.465 
0.503 0.504 

0.555 0.551 
0.610 0.609 

0.692 0.690 
melts 
at 125 
cy/sec 0.806 

melts 
at 122 
cy/sec 

0.221 

0.273 

0.345 
0.400 

0.547 

0.692 

0.799 

q 

0.221-0.307 
0.246-0.339 
0.273-0.376 
0.304-0.418 
0.347-0.469 
0.396-0.530 
0.456-0.602 

0.645 

0.545-0.691 
0.603-0.744 

0.680-0.801 

0.785-0.866 

unstable--o.907 
121 cy /sec 
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accepted and the static pattern has the appearance of 
a stalactite with the particles of high elm on top and 
those of progressively lower elm ratios dangling below. 
The high elm particles can be rejected by decreasing 
the frequency until they are unstable or conversely 
the low elm particles dropped out by increasing the 
frequency. By using the series voltage (Vdc) as described 
in the theory only particles within a narrow band can 
be kept. 

Using the second oscillator the resonance frequency 
of the cloud can be investigated by observing when the 
particles absorb energy. Starting with the uniform 
cloud of Fig. 10 the frequency was measured as a 
function of the drive-also the "melting frequency" was 
noted. After a run was completed some particles were 

FIG. 11. Suspension of 32 positively charged particles viewed 
in the r-8 plane. Vae=500 v rms, 2V'=O,n= 135 cy/sec,w.=43.6 
cy/sec. The average charge to mass ratio of a single particle was 
e/m=O.00765 coulomb/kg. 

thrown out of the chamber and a new run taken by 
changing the frequency. This process was repeated 
progressively until only one particle was left. Table II 
shows the experimental results. It is seen that for a 
given drive "{3" is a function of the number of particles. 
The values q listed on the right were computed from 
the one particle data. 

Figure 11 shows a microphotographic view in the 
y- {} plane of the 32 particles for which data were taken 
in Table II. This top view is typical of the observed 
"crystalline" arrays of many particles. Figure 12 shows 

FIG. 12. Suspen­
sion of five positively 
charged particles 
viewed in the r-8 
plane. V'C=500 v 
rms,2Vde=O,n=210 
cy/sec, and w,=23.1 
cy /sec. The charge 
to mass ratio of a 
single particle was 
later found to be elm 
=0.00765 coulomb/ 
kg. 

a top view of the five particles for which data were taken 
in Table II. Note that each particle lies at apex of a 
regular pentagon. In the three particle case the particles 
were bound in an equilateral triangle in y-{} plane. 

Besides containing particles of only one sign we have 
seen the simultaneops containment of particles of both 
sign. In this case when V g is added across the top caps 
the particles are caused to move vertically in opposite 
directions. 

HIGH-FREQUENCY-EXCITATION 

The audio source used in the previously described 
work was replaced by a 300 megacycle source which 
theoretically would confine electrons. Experiment 
demonstrated that excitation by the high frequency 
resulted in the production of a visible glow inside the 
chamber. The vacuum was such that an electron mean­
free path was about 1000 t.imes the chamber dimensions. 
The glow could be extinguished by addition of dc 
voltage in series with the driving signal. Details of this 
work will be reported at a later date.t 
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t Note added in proof.-The following references have recently 
come to our attention: (a) M. L. Good, Univ. Calif. Rad. Lab. 
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Physik 152, 143-182 (1958). (d) E. Fisher, thesis, University of 
Bonn (unpublished) (1958). 
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